General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

TECHNICAL NOTE
TN-AP-67-287

CHRYSLER
IMPROVED
NUMERICAL
DIFFERENCe ING .
ANALYZER
for $3^{\text {rd }}$ GENERATI\&N CoMPUTERS
October 20, 1967
1

Prepared by:
 Systems Programming Unit

L. R. Thompson, Sr. Programmer Systems Programing Unit

Approved by:

F. M. Van Sickle, Chief Engineer Service Engineering Branch

CINDA-3G

TABLE OF CONTENTS

SECTION
TITLE
PAGE

I
II

III
DISCUSSION
3.1

Lumped-Parameter Representation 3.1
Basics of Finite Differencing 3.3
Iterative Techniques 3.6
Pseudo-Compute Sequence 3.8
Data Logistics
3.11

Order of Computation 3.13
Systems Programming 3.13
DATA INPUT REQUIREMENTS 4.1
Title Block
4.2

Node Data Block 4.2
Conductor Data Block
4.5

Constants Data Block 4.8
Array Data Block 4.10
Program Control
4.11

Execution Operations Block 4.13
Variables 1 Operations Block 4.15
Variables 2 Operations Block 4.17
Output Calls Operations Block 4.19
Parameter Runs
4.21

Store and Recall Problem Options 4.22
CONTROI CARDS AND DECK SETUP 5.0
VI SUBROUTINES AVAILABLE
Alphabstical Listing of $\quad 6.0$
Execution
6.1

Interpolation $\quad 6.2$
Arithmetic
6.3

Output
Matrix
6.4
6.5

Special
6.6

VII ERROR MESSAGFS 7
VIII OPERATING SYSTEM DESCRIPTION 8
IX
SAMPLE PROBLEMS

SECTION I

SUMMARY

The original CINDA computer program, coded in FøRTRAN-II and FAP for the IBM-7094 computers, is documented as Chrysler Corporation Space Division Technical Note TN-AP-66-15, dated April 30, 1966. It has gained wide acceptance and usage throughout the Thermodynamic community and in fact become a standardized program at several installations. However, the original program was unsuitable for standard operation on third generation computers. Therefore, the National Aeronautics and Space Administration's Manned Spacecraft Center awarded a contract to Chrysler to produce the version described herein. This new version entitled CINDA3G is coded in FØRTRAN-V for the Univac-1108 computer. Minor portions are coded in the Sleuth II assembly language in order to achieve bit manipulation and shifting operations where required and also to allow certain user subroutines to have a variable number of arguments. Problem data decks prepared for the old version require only a few changes in order to run under the new version. Although numerous comparisons will be made to ${ }^{1} \mathrm{~N}-\mathrm{AP}-66-15$, this document is intended to be complete and self-contained.

SECTION IT

INTRODUCTION

The computer program described herein, Chrysler Improved Numerical Differencing Aneiyzer for 3 rd Generation computers (CINDA-3G), was developed by the Thermodynamics Section of the Aerospace Physics Branch of Chrysier Corporation Space Division at the National Aeronautics and Space Administration's Michoud Assembly Facility. Programming and systems integration for the Univac-1108 computer was performed by the CCSD Computation Services Group at the NASA Central Computer Facility, Slidell, Louisiana. A major portion of this work was done under contract NAS9-7043 from the Manned Spacecraft Center, Houston, Texas.

This program appears virtually identical to its predecessor (CINDA, CCSD-TN-AF-66-15) but has been almost completely rewritten in order to take advantage \mathfrak{d} the improved systems software and machine speeds of the 3rd gereration computers. The entire programming approach has changed. Whereas CINDA was virtually a self contained program having its own Update, Monitor and Compiler; the CINDA-3G fourdation consists of a preprocessor (written in Fortran) which accepts the same user input data and converts it into advanced Fortran language subroutines and block data input which is then passed onto the system Fortran Compiler. While this requires a double pass on data where previously only one was required, the increased speed and improved software of the 3rd generation machines more than compensates. Transient thermal analysis solutions realize the increased machine speeds and in addition, perform fewer operations which further reduces solution times.

The CINDA-3G program options offer the user a variety of methods for solution of themal analog models presented to it in a network format. The network representation of the thermal problem is unique in that it has a one-to-one correspondence to both the physical model and the mathematical model. This analogy enables engineers to quickly construct mathematical models of complex thermophysical problems and prepare them for program input. In addition, the program contains numerous subroutines for handling interrelated complex phenomena such as sublimation, diffuse radiation within enclosures, simultaneous l-D incompressible fluid flow including valving and transport delay effects, etc. The optional combination of these capabilities in conjunction with model size ailowable (>4000 nodes for a linea: 3-D system on 65 K core) makes UINDA-3G an extremely potent analytical tool for thermal systems analysis, in the hands of a competent engineer analyist.

CINDA-3G

SECTION III

DISCUSSION

Lumped-Parameter Representation

Th: $r e y$ ec utilizing a network type analysis program lies in the users ability to develop a lumped parameter representation of the physical problem. Once this is done, superimposing the network mesh is a mechanical task at most and the numbering of the network elements is simple although perhaps tedious. It might be said that the network representation is a "crutch" for the engineer, but, it does simplify the data logistics and allow easy preparation of data input to the program. In addition, it allows the user to uniquely identify any element in the network and modify its value or function during the analysis as well as sense any potential or current flow in the network. Another feature of the retwork is that it has a one-to-one correspondence to the mathematical model as well as the physical model.

Perhaps the most critical aspect of the lumped parameter approach is determining the lump size. There are methods for optimizing the lump size but they usually involve more analytical effort and computer time than the original analysis. One must also keep in mind that for a transient problem, time is being lumped as well as space. Of prime importance is what information is being sought from the analysis. If spot temperatures are being sought, nodes must at least fall on the spots and not include much more physically than would be expected to exist at a relatively similar temperature. Nodes must fall at end points when a temperature gradient is sought. Of necessity, lumping must be fairly fine where isotherma are sought. Lumping should be coarse in areas of high thermal conductivity. When nonlinear properties are being evaluated the lumping should be fine enough so that extreme gradients are not encountered. The lumping is also dependent on the severity of the nonlinearity.

In order to reduce round-off error the explicit stability criteria of the lump (the capacitance value divided be the summation of conductor values into the node) should be held fairly constant. The value ($C / \Sigma G$) is directly proportional to the square of the distance between nodes. Although refining the lumped parameter representation will yield more accurete answers, halving the distance between nodes decreases the stability criteria by a factor of four and increases the number of nodes by a facter of two, four or eight depending upon whether the problem is one, two or three dimensional. For the explicit case, halving the distance between nodes increases the machine time for transient analysis by a factor of eight, sixteen or thirty-two respectively. The increase in solution time for the implicit methods is somewhat less but proportional.

Wher lumping the time space, consideration must be given to the frequency of the boundary conditions. A time step must notstep over boundary excitation points or they will be missed. Don't step over pulses, rather, rise and fall with them. Generally the computation interval for the explicit methods is sufficiently small so that frequency effects can be ignored. However, care must be exercised when specifying the time step for implicit methods. If only a small portion of a transient analysis involves frequency considerations the time step used may be selectively restricted for that interval. By setting the maximum time step allowed as a function of time, an interpolation call may be utilized to vary it accordingly.

One must also realize that the problem being solved is linearized over the time step. Heating rate calculations are usually computed for a iime point and then applied to a time space. If the rates are nonlinear a certain amount of error is introduced, particularly so with radiction. These nonlinear effects may cause almost any method of solution to diverge. A brute force method for forcing convergence is to limit the temperature change allowed over the time space. Consideration of the factors mentioned above coupled with some experience in using the program will aid the observant analyst in choosing lump sizes that will yield answers of sufficient eagineering accuracy with a reasonable amount of computer time.

The following diagram displays the lumped parameter representation and network superposition of a one dimensional heat transfer problem.

The "node" points are centered within the lumps and temperatures at the nodes are considered uniform throughout the lump. The capacitors hung from the nodes indicate the ability of the lump to store thermal energy. (Japacitance values are calculated as lump volume times density times specific heat. The conductors (electrical symbol G) represent the capability for transmitting thermal energy from one lump to another. Conductor values for energy transmission through solids are calculated as thermal conductivity times the energy cross zectional flow area divided by path length (distance between nodes). Conductor values for convective heat transfer are calculated as the convection coefficient times the energy cross sectional flow area. Conductors representing energy transfer by radiation are usually indicated by crossed arrows
over the conductor symbol. Radiation transfer is nonlinear, it is proportional to the difference of the absolute temperatures raised to the fourth power. Utilization of the Farenheit system allows easy automation of this noniinear transfer function by the program and reduces the radiation conductor value to the product of the StephanBoltzman constant times the surface area times the net radiant interchange factor (script F).

Basics of Finite Differencing

The concept of network superposition on the lumped parameter representation of a physical system is easy to grasp. Describing the network to the program is also quite straight forward. Having described a network to the program, what information have we really supplied and what does the program do with it? Basically, we desire the solution to a simultaneous set of partial differential equations of the diffusion type; i.e.,

$$
\begin{equation*}
\frac{\partial \mathrm{T}}{\partial \mathrm{t}}=\alpha \nabla^{2} \mathrm{~T}+\mathrm{S} \quad, \quad \nabla^{2} \equiv \frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2}}{\partial \mathrm{z}^{2}} \tag{1}
\end{equation*}
$$

That the diffusivity ($\alpha=k / \rho C_{p}$) way be temperature varying or nomlinear radiation transfer occuring is immaterial at this point. Of importance is how equation one is finite differenced and its relationship to the network and energy flow equations more commonly utiiized by the engineer. The partial of the T state variable with respect to time is finite differenced across the time space as follows;

$$
\begin{equation*}
\frac{\partial T}{\partial t} \approx \frac{T^{\prime}-T}{\Delta t} \tag{2}
\end{equation*}
$$

where the prime indicates the new T value after passage of the . It time step.

The right side of equation one could be written with T primed to indicate implicit "backward" differencing or urprimed to indicate explicit "forward" differencing. The following equation is illustrative of how "backward" and "forward" combinations may be obtained.

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\beta\left(\alpha \nabla^{2} T+S\right)+(1-\beta)\left(\alpha^{\prime} \nabla^{2} T^{\prime}+S^{\prime}\right) \tag{3}
\end{equation*}
$$

$$
0 \leq \beta \leq 1
$$

Any value of β less than one yields an implicit set of equations which must be solved in a simultaneous manner (more than one unknown exists in each equation). Any value of β equal to α less than one half yields an unconditionally stable set of equations or in other words, any time step desired may be used. Values of β greater than one half invoke stability criteria or limitations on the magnitude of the time step. A value of β equal to one half yields an unconditionally stable implicit set of equations commonly known as "forwardbackward" differencing or the Crank-Nicholson method. Various transformations or first crder integration applied to equation one generally yield an implicit set of equations similar to equation three with β equal to one half. The following finite difference approach generally applies to transformed equations.

Let's consider the right side of equation three with β equal to one and rewrite it as follows;

$$
\begin{equation*}
\alpha \nabla^{2} T+S \approx \frac{a}{\Delta x}\left(\frac{\partial T}{\partial x-}-\frac{\partial T}{\partial x+}\right)+\frac{a}{\Delta y}\left(\frac{\partial T}{\partial y-}-\frac{\partial T}{\partial y+}\right)+\frac{a}{\Delta z}\left(\frac{\partial T}{\partial z-}-\frac{\partial T}{\partial z+}\right)+S \tag{4}
\end{equation*}
$$

The minus or plus signs on the first partial terms indicate that they are taken on the negative or positive side respectively of the point underconsideration and always in the same direction. If we consider three consecutive points (1,2 and 3) ascending in the X direction we can complete the finite difference of the X portion of equation four as follows;

$$
\begin{equation*}
\frac{a}{\Delta x}\left(\frac{\partial T_{2}}{\partial x-}-\frac{\partial T_{2}}{\partial x+}\right) \approx \frac{a}{\Delta x}\left(\frac{T_{1}-T_{2}}{\Delta x-}+\frac{T_{3}-T_{2}}{\Delta x+}\right) \tag{5}
\end{equation*}
$$

Applying the above step to the y and z portions of equation four yields the common denominator of volume ($V=\Delta x * \Delta y * \Delta z$). Using equation three with β equal to one, finite differencing with the steps used for equations thres, four and five, substituting $\alpha=k / \rho C p$ and multiplying both sides by $\rho V C p$ yielde

$$
\begin{align*}
\frac{\rho V C p}{\Delta t}\left(T_{0}^{\prime}-T_{0}\right)= & \frac{k A x}{\Delta x-}\left(T_{1}-T_{0}\right)+\frac{k A x}{\Delta x+}\left(T_{2}-T_{0}\right) \\
& +\frac{k A y}{\Delta y-}\left(T_{3}-T_{0}\right)+\frac{k A y}{\Delta y+}\left(T_{4}-T_{0}\right) \\
& +\frac{k A_{z}}{\Delta z-}\left(T_{5}-T_{0}\right)+\frac{k A z}{\Delta z+}\left(T_{6}-T_{0}\right)+Q \tag{6}
\end{align*}
$$

CTNDA-3C
where $A x=\Delta y \cdot \Delta z, \ell y=\Delta x \cdot \Delta z, A z=\Delta x \cdot \Delta y$ and $Q=\rho V C p S$
The numbering system corresponds to the following portion of a three dimensional network

It should be obvious that the network capacitance value is $\rho \mathrm{VCp}$, that the Gl value is $k A x / \Delta x-$, etc. Equation six may then be written as

$$
\begin{align*}
C_{0}\left(T_{d}-T_{0}\right) / \Delta t= & G_{1}\left(T_{1}-T_{0}\right)+G_{2}\left(T_{2}-T_{0}\right)+G_{3}\left(T_{3}-T_{0}\right)+G_{4}\left(T_{4}-T_{0}\right) \\
& +G_{5}\left(T_{5}-T_{0}\right)+G_{6}\left(T_{6}-T_{0}\right)+Q_{0} \tag{}
\end{align*}
$$

or in engineering terminology the rate of change o_{i} temperature wi respect to time is proportional to the sumation of heat flows int the node.

It should be noted that Figure F2 is essentially superimposed on a lumped parameter cube of a physical system and is the network representation of equation one. Since equetion seven is written in explicit form, only one unknown (T_{0}^{\prime}) exists and all of the information necessary for its solution is sontsined in the network description. If it had been formulated implicitly it would have to be solved in a simultaneous manner. No matter what mothod of solution is requested of the prografi, the information necessary has been conveyed by the
network description. When an implicit set is used with β greater then zero, the energy flows based on old temperatures are added to the Q term and the equations are then treated in the same manner as for β equal to zero.

$$
\begin{equation*}
\alpha \nabla^{2} T+S=0 \tag{8}
\end{equation*}
$$

The solution of Poisson's equation (eight) is the solution utilized for steady state analysis. It is extremely important because virtuaily all of the unconditionally stable implicit methods reduce to it. If equation seven had all the right side values primed and the left side was subtracted from both sides, we could think of $\mathrm{Go} / \Delta \mathrm{t}$ as a Go term and To (old) would then become a boundary node. In a manner of speaking, the capacitor we look at in 3-D becomes a conductor in 4-D. We could draw a four dimensional network but since there is no feedback in time it is senseless to take more than one time step at a time. However, various time-space transformations can be utilized such that a one-dimensional "transient" yields the solution to a two dimensional steady state problem, etc. This is analogous to the "Particle in Cell" method developed in the nuclear field for following shock wave propagation.

Iterative Techniviss

Now that we have discussed the correlation between the physical model, network model and mathematical mudel, let's investigate the commonality of the various methods of solution. By describing the network of Figure Fl to the program we have supplied it with five temperatures, five capacitors, five sources (four not specified and therefore zero), four conductors and the adjoining node numbers of the conductors. An explicit formulation such as equation six has only one unknown. It's solution is easily obtainable as long as any associated stabilit; criteria are continously satisfied. A more interesting formulation would be a set of implicit equations as follows:

$$
\begin{align*}
& \left(T_{1}^{\prime}-T_{1}\right) C_{1} / \Delta t=Q_{1}+G_{1}\left(T_{1}-T_{1}\right) \\
& \left(T_{2}-T_{2}\right) C_{2} / \Delta t=Q_{1}+G_{1}\left(T_{1}-T_{2}^{\prime}\right)+G_{2}\left(T_{3}-T_{2}^{\prime}\right) \\
& \left(T_{j}-T_{3}\right) C_{3} / \Delta t=Q_{3}^{2}+G_{2}\left(T_{2}-T_{3}\right)+G_{3}\left(T_{4}-T_{3}\right) \tag{9}\\
& \left(T_{4}-T_{4}\right) C_{4} / \Delta t=Q_{4}+G_{3}\left(T_{3}-T_{4}\right)+G_{4}\left(T 3-T_{4}\right) \\
& \left.\left(T_{3}-T_{5}\right) C_{5} / \Delta t=Q_{4}+T_{4}-T_{3}\right)
\end{align*}
$$

If the above had been formulated as a combination of explicit and implicit, the known explicit portion would have been calculated and added to the Q terms, then the β factor divided into the Q terms and multiplied times the Δt term.

If we divide the Δt term into the C terms and indicate this by priming © we can reformulate equation nine as follows:

$$
\begin{align*}
& \left(C_{1}+G_{1}\right) T_{1}=Q_{1}+G_{1} T_{1} T_{1}+G_{1} T_{2} \\
& \left(C_{2}+G_{1}+G_{2}\right) T_{2}=Q_{2}+C_{2} T_{2}+G_{1} T_{1}^{\prime}+G_{2} T_{3} \\
& \left(C_{3}+G_{2}+G_{3}\right) T_{3}=Q_{3}+C_{3} T_{3}+G_{2} T_{2} G_{3} T^{\prime} \tag{10}\\
& \left(C_{4}+G_{3}+G_{4}\right) T_{4}^{4}=Q_{4}+C_{4} T_{4}+G_{3} T_{j}+G_{4} T_{3} \\
& \left(C_{3}+G_{4}\right) \quad T_{3}^{\prime}+C_{3} T_{5}+G_{4} T
\end{align*}
$$

This equation can be generalized as

$$
T_{i}^{\prime}=\frac{C_{1}^{\prime} T_{i}+\Sigma G_{0} T_{d}+Q_{i}^{\prime}}{C_{i}^{\prime}+\Sigma G_{0}} \text {, sub a for adjoining }(11)
$$

where the sub a indicates connection to adjoining nodes. A C' value of zero yields the standard steady state equation, the conductor weighted mean of all the surrounding nodes. We see here that the C' can be thought of as a conductor to the old temperature value and therefore equation eleven, although utilized to obtain transient solutions, can be considered as a steady state equation in 4-D. By rowriting equations ten in the form of equation eleven we are in a position to discuss iterative techniques. By assuming all old values on the right hand side of ten we could calculate a new set of temperatures on the left which, although wrong, are closer to the correct answer. This single set of calculations is termed an iteration. By replacing all of the old temperatures with those just calculated we can then perform another iteration. This process is called "block" iteration. A faster method is to utilize only one location for each temperature. This way, the newest temperature available is always utilized, otherwise old. This method is termed "successive point" iteration and is generally 25% faster than "block" iteration. The iterative process is continued a fixed (set by user) number or times or until the maximum absolute difference between the new and old temperature values is less than some prespecified value (set by user).

Although the above operations are similar to a relaxation procedure there is a slight difference. We are performing a set of calculations in a fixed sequence. A relaxation procedure would continously seek the node with the maximum temperature difference between old and new and calculate it. Programming wise, as much work is required in the seeking operation which must be consecutive as in the calculation. For this reason it would be wasteful to code a true relaxation method.

In addition to the iterative approach, several solution subroutines utilize an acceleration feature and/or a different convergence criteria. Once it can be determined that the temperatures are approaching the steady state value, an extrapolation is applied in an attempt to accelerate convergence. This convergence criteria is the maximum absolute temperature change allowed between iterations. This criteria however is generally one sided and any associated errors are accumulative. In order to obtain greater accuracy, some subroutines are coded to perform an energy balance on the entire system (a type of Green's function) and apply successively more severe convergence criteria until the system energy balance (energy in minus energy out) is within some prespecified tolerance.

Pseudo-Compute Sequence

When working with a simultaneous set of equations such as equations ten, they are quite often treated by matrix methods and formulated as follows:

$$
\begin{equation*}
|\mathrm{A}|\left|\mathrm{T}^{\prime}\right|=|\mathrm{B}| \tag{12}
\end{equation*}
$$

$$
[A]=\left[\begin{array}{ccccc}
\left(C_{1}+G_{1}\right) & -G_{1} & 0 & 0 & 0 \\
-G_{1}\left(C_{2}+G_{1}+G_{2}\right) & -G_{2} & 0 & 0 \tag{13}\\
0 & -G_{2} & \left(C_{3}+G_{2}+G_{3}\right) & -G_{3} & 0 \\
0 & 0 & -G_{3} & \left(C_{1}+G_{3}+G_{4}\right) & -G_{4} \\
0 & 0 & 0 & -G_{4} & \left(C_{5}^{\prime}+G_{4}\right)
\end{array}\right]
$$

$$
\left\{T^{\prime}\left|=\left\{\begin{array}{c}
T_{1} \\
T_{2} \\
T_{3} \\
T_{4} \\
T_{5}
\end{array}\right\} \quad, \quad\right| B \left\lvert\,=\left\{\begin{array}{c}
Q_{1}+C_{1} \\
T_{1} \\
Q_{2}+C_{2}^{1} \\
T_{2} \\
Q_{3}+C_{3} \\
Q_{3}+C_{4}^{4} \\
Q_{5}+C_{5}^{4} \\
T_{5}
\end{array}\right\}\right.\right.
$$

The inverse of [A] is then calculated and the solution obtained by matrix multiplication.

$$
\begin{equation*}
\left|\mathrm{T}^{\prime}\right|=[\mathrm{A}]^{-1}|\mathrm{~B}| \tag{14}
\end{equation*}
$$

It should be noted that the one dimensional problem has no more than three finite values in any row or column of the coefficient matrix [A]. A ihree dimensional problem would generally have no more than seven finite values in any row or column. It is easy to see that a one thousand node three dimensional problem would require one million data locations of which approximately 993,000 would contain zero. The inverse might require an additional one million data locations. Aside from exceeding computer core area, the computer time required to calculate the inverse is proportional to the cube of the problem size and large problems soon become uneconomical to solve.

The explicit and iterative implicit methods previously discussed are well suited for optimizing the data storage area required. Note the adjoining node numbers associated with the conductors of Figure Fl.

$$
\begin{align*}
& 1,1,2 \rightarrow G 1 \text { between nodes } 1 \text { and } 2 \\
& 2,2,3 \rightarrow G 2 \text { between nodes } 2 \text { and } 3 \tag{15}\\
& 3,3,4 \rightarrow G 3 \text { between nodes } 3 \text { and } 4 \\
& 4,4,5 \rightarrow G 4 \text { between nodes } 4 \text { and } 5
\end{align*}
$$

Note also the row and column position of conductor values off the main diagonal in the [A] coefficient matrix, equation 13; By retaining the adjoining node numbers for each conductor we are able to identify their element position in the coefficient matrix. As a consequence we need store only the finite values. The main diagonal term is a composite of the node capacitance and conductor values off of the main diagonal.

The program operates on the adjoining node numbers to form what is termed the pseudo-compute sequence (PCS). The nodes are to be calculated sequentially in ascending order so the adjoining nodes are searched until the number one is found. When this occurs the conductor number and other adjoining node number are stored as a doublet value. The search is continued until all ones are located and the conductor number for the last receives a minus sign. The process is then continued for node two, etc. until all the node numbers have been processed. The pseudo-compute sequence formed is shown in Figure 16A. A slight variation to this operation is to place a minus sign on the original other adjoining node number so that it is not recognized when it is searched for. The resulting pseudo-compute sequence thus formed is shown in Figure 16B.

LPCS	SPCS	
$-1,2$	$-1,2$	
1,1	$-2,3$	
$-2,3$	$-3,4$	
2,2	$-4,5$	
$-3,4$	$-0,0$	(B)
3,3		
$-4,5$	(A)	
$-4,4$		

The above pseudo-compute sequences are termed long (LPCS) and short (SPCS) respectively. By starting at the top of the pseudo-compute sequence we are operating on rode one. The two values identify the conductor into the rode (the position of the conductor value in an array of conductor values) and the adjoiniug node (the position of the temperature, capacitor and source values in arrays of temperature, capacitor and source values respectively). The node being operated on starts as one and is advanced by one each time a negative conductor number is passed.

It is easy to see that the long pseudo-compute sequence identifies the element position and value locations of all the off diagonal elements of the row being operated on. It takes complete advantage of the sparsity of the coefficient matrix. It is well suited for "successive point" iteration of the implicit equations because all elements in a row are identified. When a row is processed and the new T value obtained, the new T can then be used in the calculation procedure of succeeding rows.

The short pseudo-compute sequence identifies each conductor only once and in this manner takes advantage of the symmetry of the coefficient matrix as well as the sparsity. It is well suited for explicit methods of solution. The node being operated on and the adjoining node number reveal their temperature value locations and their source value locations. The explicit solution subroutines calculate the energy flow through the conductor, add it to the sourcs location of the node being worked on and subtract it from the source location for the adjoining node. However, if the short pseudocompute sequence were utilized for implicit methods of solution they would require the use of slower "block" iterative procedures. The succeeding rows do not have all of the elements defined and the energy rates passed ahead were besed on old temperature values.

Data Logistics

The pseudo-compute sequences formulated as shown above allow the program to store only the finite values in the coefficient matrix thereby taking advantage $0 i$ its sparsity. In addition, the short pseudo-ccmiste sequence takes advantage of any symmetry which may exist. Multiply connected conductors which will be covered in the next section also allow the user to take advantage of similarity as well. The foregoing is fairly easy to follow, especially if the nodes and conductors start with the number one and continue sequentially with no missing numbers. This restriction is too limiting for general use on large network models. To overcome this restriction the program assigns relative numbers (sequential and ascending) to the incoming node data, conductor data, constants data and array data in the order received. Any numbers missing in the actual numbering system set up by the user are packed out thereby requiring only as much core space as is actually necessary.

All solution (Execution) subroutines require three locations for diffusion node data (temperature, capacitance and source) and one location for each conductor value. - o may require from zero to three extra locations per node IOL ormediate data storage. Each: node in a three dimensional network has essentially six conductors connected to it but only three are unique; i.e., each additional node requires only three more conductors. Hence, each node in a three dimensional system requires rom six to nine storage locations for data values (temperature, capa itance, source, three conductors and up to three intermediate locations). The two integer values that make up a doublat of the pseudo-compute sequence are packed into a single core location. Hence, for a three dimensional network, each node requires approximately three locations for data addressing for the short and six locations for the long pseudo-compute sequence. The number of core locations required per node can vary from nine to fifteen.

The program requires the user to allocate an array of data locations to be used for intermediate data storage and initialize array start and length indicators. Each subroutine that requires intermediate storage area has access to this array and the start and length indicators. They check to see that there is sufficient space, update the start and length indicators and continue with their operations. If they call upon another subroutine requiring intermediate storage, the secondary subroutine repeats the check and update process. Whenever any subroutine terminates its operations it returns the start and length indicators to their entry values. This process is termed "Dynamic Storage Allocation" and allows subroutines to share a common working area.

OPERATION	DESCRIPTION
CTS	Calculate time step
VARB[]	Variables 1 operations
SN	Solve Network
VARBI2	Variables 2 operations
¢UTCAL	Output calls operations
MTC	Medify time control
EI	Erase iteration
Check	Reverse direction if
(1)	Backup nonzero

Relacation criteria not net
Time or temp change to large
Backup nonzero
Not time to print
Problem stop time not reached

BASIC FLÓW CHART FOR NETWORK SOLUTION SUBROUTINES

Order of Computation
A problem data deck consists of data and operations "blocks" which are preprocessed by CINDA-3G and passed on to the system FфRTRAN compiler. The operations blocks are named EXECUTIØN, VARIABLES 1, VARIABLES 2 and \varnothing UTPUT CALLS. The FøRTRAN compiler constructs these blocks as individual subroutines with the entry names EXECTN, VARBLI, VARBL2 and ØUTCAI respectively. After a successful compilation, control is passed to the EXECTN subroutine. Therefore, the order of computation depends on the sequence of subroutine calls placed in the EXECUTIDN block by the program user. No other operations blocks are performed unless called upon by the user sither directly by name or indirectly from some subroutine which internally calls upon them. The network execution subroutines listed in Section 5.1 internally call upon VARBLl, VARBL2 and \emptyset UTCAL. Their internal order of computation is quite similar, the primary difference being the analytical method by which they solve the network. Figure F3 represents a flow diagram of all the network solution subroutines; the subroutine writeups contain the comparisons made at the various check points and the routings taken.

Systems Programming

CINDA-3G is actually an operating system rather than an applications program. The more one studies and uses the program the more apparent this becomes. In order for the program to accomplish the desired operations with regards to overlay features, data packing, dynamic storage allocation, subroutine library file and yet be written in Fortran, it was necessary to program CINDA-3G as a preprocessor. This preprocessor operates in an integral fashion with a large library of assorted subroutine which can be called in any sequence desired yet operate in an integrated manner. It reads all of the input data, assigns relative numbers, packs it, forms the pseudo-compute sequence and writes it on a peripheral unit as Fortran source language with all of the data values dimensioned exactly in name common. It then turns control over to the system Fortran compiler which compiles the constructed subroutines and enters execution. The Fortran allocator has access to the CINDA-3G subroutine library and loads only those subroutines referred to by the problem being processed.

Due to this type of operation, CINDA-3G is extremely dependent on the systems software supplied. However, once the program has been made operational on a particular machine, the problem data deck prepared by the user can be considered as machine independent. The user need only consult the section in this document on "Control Cards and Deck Setup" to switch his problem from one machine to another.

SECTION IV

DATA INPUT REQUIREMENTS

A CINDA-3G problem data deck consists of both data and instruction cards. The card reading subroutines for CINDA-3G do not utilize a fixed format type of input; they use a free form format quite similar to the old SHARE decimal data read routine. The type of data is designated by a mnemonic code in columns eight, nine and ten. This is followed by the data field which consists of columns twelve through eighty on the instruction field which consists of column twelve through seventy-two. Although blanks are allowed before or after numerical data they may not be contained within. The number 1.234 is fine, but 1.234 will cause the program to abort. The program processes the problem data into Fø民TRAN common data and reforms instructions into FøRTRAN source language which are then passed on to the system FøRTRAN compiler. Instruction cards which contain an F in column one are passed on exactly as received. Any instruction card with or without an F in column one may contain a statement or sequence number in columns two through five which is passed on to and used by the FøRTRAN compiler.

The most frequently used mnemonic code was the old DEC designation which has been replaced by three blanks. The data following this blank mnemonic code may be one or more integers, floating point numbers (with or without the E exponent designation) or alpha-numeric words of up to six characters each. The reading of a word or number continues until a conma' is encountered and then the next word or number is read. As many numbers or words as desired may be placed on a card but they may not be broken between cards. A new card is equivalent to starting with a comma and therefore no continuation designation is required. All blanks are ignored and reading continues until the terminal column is reached or a dollar sign encountered. Comments pertinent to a data card may be placed after a dollar sign and are not processed by the program. If sequential commas are encountered, floating-point zero vaiues are placed between them.

The next most frequently used code is BCD (for binary coded decimai) which must be followed ty an integer one through nine in column twelve. The integer designates the number of six character words immediately following it. Blanks are retained and only the designated number of six character words are read from the card. The mnemonic
code END is utilized to designate the end of a block of input to the program. The code REM serves the same function as a F申RTRAN comment card;' it is not processed by the program but allows the user to insert non-data for clarification purposes. The code фCT may be utilized and allows the input of a single octal word starting in column twelve. The special codes CGS, $C G D$ and $G E N$ will be discuscod later in this section.

The data deck prepared by a program user consists of various input "blocks" containing either data or instructions. A fixed sequence of block input is required and each block must start with a BCD 3 header card and terminate with an END card (mnemonic codes). Specific details about these blocks follows:

Title Block

The first card of a problem data deck is the title block header card. It conveys information to the program as to the type of problem, which data blocks follow and how they should be processed. The three options presently available are:

Col 8
BCD 3GENERAL
or BCD 3THERMAL SPCS
or BCD 3THERMAL IPCS
The GENERAL indicates that a non-network problem follows and therefore no node or conductor data is present. The THEFMAL cards indicate that a conductor-capacitor (CG) network description follows and that either a short (SFCS) or long (IPCS) pseudo-compute sequence should be constructed. The title block header card may be followed by as many BCD cards as desired. Han sver, the firat twenty words (six characters each) are retained by the program and used as a page heading by the user designated output routines. The block must be terminated by an END card and is then followed by node data for a CG network problem or constants data for a non-network problem.

Node Data Block

As discussed in section three, there are three types of nodes; diffusion, arithmetic and boundary. Diffusion nodes are those nodes with a positive capacitance and have the ability to store energy.
t guman

Their future values are calculated by a finite difference representation of the diffusion partial differential equation. Arithmetic nodes are designated by a negative capacitance value, they have no physical c pacitance and are unable to store energy. Their future values are calculated by a finite difference representation of Doisson's partial differential equaticn. This is a steady state calculation which always utilizes the latest diffusion node values available. Boundary nodes are designated by a minus sign on the node number; they refer to the mathematical boundary, not necessarily the physical boundary. Their values are not changed by the network solution subroutines but may be modified as desired by the user.

A diffusion node causes three core locations to be utilized, one each for temperature, capacitance and a source location. An arithmetic node receives core locations for temperature and source only and a boundary node only receives a temperature location. The program user is required to group his node data into the above three classes and submit them in that order. Node de.ta input with the three blank mannonic code always consists of three values; the integer node number followed by the floating point initial temperature and capaciatance values. A negative capacitance value is used to designate an arithmetic node while a negative node number designates a boundary node. Although the capacitance value of a boundary node is meaningless, it must be included so as to maintain the triplet format.

All nodes are renumbered sequentiaily (from one on) in the order received. The user input number is termed the actual node number while the program assigned number is termed the relative node number. This relative numering system allows sequential posing of the data and does not require a sequentiful rumbering system on the part of the program usuz. It is worth noting that the pseudo compute sequence is based on the relative numbering system. Hence, che computational sequence of the nodes is identical with their input sequence. If a user desired to reorder the computations in order to aid boundary propagation, he needs merely to reorder his nodal input data.

The mnemonic codes CGS, CGD and GEN may be used. The CGS and CGD codes are used when one or two materials respectively with temperature varying properties are to be considered. For a single material the node number and initial temperature remain the same but instead of a capacitance value, the user may input the starting location (integer count) of a doublet array of the temperature varying property followed by the actual (literal) multiplying factor value to complete the calculation or a constants location containing it. For a node consisting
of two materials, the node number and initial temperature remain the same but the user would use two array addresses and multiplying factors with a CGD code. These codes would look as follows:

```
Col }
            CGS N#,Ti,Al,F1
    or CGD N#,Ti,A1,F1,A2,F2
```

where $N \#$ is the integer node number and $T i$ is the floating point initial temperature. The A arguments refer to doublet arrays of temperature varying $C p$ or $\rho * C p$ and the F arguments may be or refer to a constant location containing the weight or volume respectively. The CGS code causes the product of the interpolated value times the F factor to be used as the capacitance value. The CGD code uses the sum of the separate interpolation times factor products as the capacitance value.

To input a sequential group of nodes, the following code is availaole,
Col 8
GIN N\#, \#N, $\mathrm{IN}, \mathrm{Ti}, \mathrm{X}, \mathrm{X}, \mathrm{Z}, \mathrm{W}$
where $\mathrm{N} \#$ is the starting node number.
\#N is the total number of nodes desired (integer).
IN is an increment for the generated nodes (integer).
Ti is the initial temperature for all nodes,
and the capacitance value is calculated as the produci of X times Y times Z times W. If this product is negative, arithmetic nodes will be generated. If $N \#$ is negative, boundary nodes will be generated. A scmple node data block could be as follows:

Col 812
BCD 3NQDE DATA
$1,80 ., 1.2,2,80 ., 1.3 \quad \$ T W \varnothing$ DIFFUSI $\not \subset N$ N \varnothing DES
CGS 3,80., A1,4.63
CGD 4,80.,A1,2.31,A2,4.76
\$EIMGLE MATERIAL NøDE
GEN 5,10,1,80.,4.63,1.,1.,1. $15,80 .,-1,16,80 .,-1$
$-18,-460 ., 0$ \$DgUBLE MATERIAL NøDE \$GENERATE 10 N $\varnothing D E S, 5-14$ \$TW中 ARITHMETIC NфDES \$øNE BgUNDARY NgDE
END
The above does not correspond to a problem; it just represents data input. Note that the nodes are input in the order: diffusion, arithmetic and boundery. The factor portion of the CGS and CGD codes may be a literal (ictual value) as shown or reference a constant's
location containing the value. Eithes one (rot ooch) of the array Arguments on the CCD code may be a literal if the property is constant. Both codes set. up linear interpolation calls which utilize the node temperature as the independent variable and interpolate a dependent value which is then miltiplied by the factor to obtain the capacitance value. The CGD call causes two interpolations and multiplications to be Ferformed and sums the products to obtain the capacitance value. These interpolations are performed each iteration during the transient analysis.

The GWI code expects values in the following order; starting node number, number of nodes to be generated, an increment for indexing the generated node numbers, the initial temperature for all nodes and four floating point numbers the product of which is the capacitance value.

Conductor Data Block

Two basic types of conductors may be used, regular or radiation, and either may utilize temperature varying properties in calculating the conductance value. When utilizing the blank mnemonic code a regular conductor consists of the integer conductor number followed by two integer adjoininf node numbers and the floating point conductance value. If more than one conductor has the same constant value, they may share the same conductor number and value. This is accomplished by placing two or more pairs of integer adjoining node numbers between the conductor number and value. The CGS and CGD mnemonic codes may also be utilized for conductors. They winld appear as follows,

> Col 8
> \quad CGS G\#,NA,NB,A1,F1
> or CCD G\#,NA,NB,A1,F1,A2,F2
where G\# is the integer conductor number
NA is one adjoining node number
NB is the other adjoining node number.
The A argiments refer to doublet arrays of temperature varying thermal conductivity $k(T)$ and the F arguments may be or refer to a constant location containing the cross sectional area divided by path length.

For CGS with Fl positive

$$
G=k l(T m) * F l, T m=(T a+T b) / 2.0
$$

For CGS with Fl negative

$$
G=k l(T a) *|P l|
$$

For CGD

$$
G=1.0 /[1.0 /(\mathrm{k} 1(\mathrm{Ta}) * \mathrm{~F} 1)+1.0 /(\mathrm{k} 2(\mathrm{~Tb}) * \mathrm{~F} 2)]
$$

The CGS mnemonic acde may be utilized for either regular or radiation conductors. The data consists of the integer conductor number, one pair only of integer adjoining node numbers and is followed by an array address and moltiplying factor. A regular conductor would normally utilize the CGS code where the addressed array would be thermal conductivity versus temperature and the multiplying factor would consist of the cross-sectional area divided by path length. A surface radiation conductor would utilize the CGS code for a temperature varying array of emissivits with the multiplying factor being the product of surface area times the StephanBoltzman constant ($F=1.0$).

The CGD code may be utilized for regular conductors passing through two materials. In this case two temperature varying property arrays and multiplying factors are input. Two conductance vaiues are calculated and one over the summation of their inverses is returned as the conductor value. Either of the array addresses may be a literal if one of the properties is a constant. The GEN code is also available for conductors and is input as follows:

Sol 8
GEN CH, \#G,IG,NA,INA,NB,INB,X,Y,Z,W
where G\# is the starting conductor number.
\#G is the total number of conductors desired (integer).
IG is an increment for the generated conductors (integer).
NA and NB are initial adjoining node numbers (integers).
INA and INB are increments for the generated adjoining nodes (integers),
and all generated conductors receive the same conductance value of X times I times Z divided by W. A negative G will cause radiation conductors to be generated.

The GEN code may be used to generate sequential conductors, either radiation or recular. The data consists of the integer conductor number, integer number of how many conductors to be generated, an integer increisent for indexing the generated conductors, the first integer adjoining nods number, an integer increment for indexing the first adjoining ncde number, the second integer adjointing node number, an integer increment for indexing the sesman adjoining nide number and
finally four floating point numbers，the product of the first three divided by the fourth is the constant conductance value．For example：

Col 8
GEN 1，2，1，1，1，2，1，2．，2．，2．，2．
GEN $-3,3,0,1,1,10,0,1 ., 1 ., 1 ., 1 . E+15$
is equivalent to
Col 12
1，1，2，4．，2，2，3，4．
$-3,1,10,2,10,3,10,1 . \mathrm{E}-15$
An additional feature of the program is the one way conductor． This is a conductor value which enters into the temperature calculation of only one of its adjoining nodes and is indicated by placing a minus sign on the uneffected node．The CGS，CGD and GEN codes may be used for one way concuctors．Physically this occurs in incompressible fluid flow and therefore，the upstream node would receive the minus sign．

A program idiosyncrasy which should be mentioned is that while a single valued cunductor with as many adjoining node pairs as decired may be used，extending several cards if necessary，an adjoining node pair must not be split between cards．In addition，the CGS，CGD and GEN card may have more than one set of data on a card but a set of data may not be broken between cards．All regular conductors must be input prior to any radiation conductors．The foilowing is illustrative of the various conductor input options．

Col 8

BCD 3CøANDUCT申ЯR DATA
1，1，2，1．2，2，2，3，1．7
3，3，4，4，5，5，6，1．5
$4,-7,8,-8,9,7.6$
CGS $5,10,11, A 3,4.6$
$\operatorname{CGD} 6,12,13, A 3,4.1, A 4,7.6$
GEN 7，3，1，1，1，9，1，1．6，4．0，1．，1．
$-10,1,99,1 . E-15$
CGS－11，2，99，A5，1．E－14
GEN－12，4，1，3，1，99，0，1．E－14，1．，1．，1． END
\＄TW\％RECTILAR CめNDUCTYRS \＄TRIPLE PLACED C\＆NDUCTゆF． \＄DØUBLE PLACED ØNEEWAY C丸ND． \＄VARIABLE CøNDUCTøR，SINGLEE \＄VARIABLE CøAUUCTøR，D¢UBLE \＄GENERATE THREE CGNDUCTØRS
 \＄VARIABLE EMISSIVITY RADIATIめN \＄GENERATE FØUR RADIATI价 CめND．

The first GEN card is equivalent to the following:
Col 12

$$
7,1,9,6.4,8,2,10,5.4,9,3,11,6.4
$$

and the second GEN card is equivalent to
Col 12
$-12,3,99,1, \mathrm{E}-14,-13,4,99,1 . \mathrm{E}-14$
$-14,5,99,1 . \mathrm{E}-14,-15,5,99,1 . \mathrm{E}-14$
If the second GEN card had incremented the conductor number by zero, it would have been equivalent to:

Col 12

$$
-12,3,99,4,99,5,99,6,99,1 \cdot \mathrm{E}-14
$$

Once the node and conductor data have been read by the program, construction of the pseudo-compute sequence is performed. Any errors encountered cause an appropriate error message to be printed and a "do not execute ${ }^{4}$ switch to be set. However, the program will continue to process input data and attempt to discover any and all recognizable errors. Items checked for are; no duplicate node or conductor numbers, all conductor adjoining nodes must have been specified in node data and all diffusion and arithmetic nodes must have at least one conductor into them. A missing comma will dislocate the data input sequence causing pages of error messages. If over two hundred error messages are printed, the program gives up and immediately terminates.

Constants Data Block

Constants data are always input as doublets, the constant name or number followed by its value. They are divided into two types, control constants and user constants, and may be intermingled within the block. Control constants (~ 50) have alpha-numeric names while user constants receive a number. User constants are simply data storage locations which may contain integers, floating point numbers or up to six character alpha-numeric words. It is up to the program user to place data in user constant locations as needed and supply the location addresses to subroutines as arguments.

Control constant values are commnicated through program common to specific subroutines which require them. However, any control constant name desired can be used as a subroutine argument. Wherever possible, control constant values not specified are set to some acceptable value. If a required control constant value is not specified an

CINDA-3G
appropriate error message is printed and the program terminated. It is up to the user to check the writeups of subroutines he is using to determine control constant requirements. A list of control constant names and brief description of each follows, check subroutine writeups for exact usage.

ARLXCA The maximum arithmetic relaxation change allowed.
ARLXCC The maximum arithmetic relaxation change calculated.
ATMPCA The maximum arithmetic temperature change allowed.
ATMPCC The maximum arithmetic temperature change calculated.
BACKUP If non-zero, the just done time step is erased and redone.
BA ENG User specified system energy balance to be maintained.
CSIFAC Stability criteria multiplication/division factor.
CSIMAX Maximum stability criteria for the network.
CSGATN Minimum stability criteria for the network.
CSGRAL Stability criteria range allowed.
CSGRCL Stability criteria range calculated.
DAMPA Arithmetic node damping factor.
DAMPD Diffusion node damping factor.
DRLXCA The maximum diffusion relaxation change allowed.
DRIXCC The maximum diffusion relaxation change calculated.
DTIMEH Highest time step allowed (maximum).
DTIMEI Input time step for implicit solutions.
DTTMEL Lowest time step allowed (minimum).
DTIMEU Time step used for all transient network problems.
DTMPCA The maximum diffusion temperature change allowed.
DTMPCC The maximum diffusion temperature change calculated.
ENGBAL The calculated energy 'Jalance of the system.
LINECT A line counter location for program output.
I \varnothing 中CT Program count of iteration loops performed (Integer).
NL $\varnothing \varnothing \mathrm{P}$ User input number of iteration loops desired (Integer).
\emptyset PEITR Causes outprit each iteration if set non-zero.
ØUTPUT Time interval for activating ØUTPUT CALLS.
PAGECT A page counter location for program output.
TIMEM Mean time for the computation interval.
TIMEN New time at the end of the computation interval.
\rightarrow TIMEND Problem stop time for transient analysis.
TIME \varnothing Old time at the start of the computation interval, also used as problem start time, may be negative.

ITEST,JTEST,KTEST,LTEST,MTEST

Dumny control constants with integer names.
RTEST,STEST,TTEST, UTEST,VTEST
Dummy control constants with non-integer names.

The following is representative of a constants data block．
Col 8
BCD 3CDNSTANTS DATA TIMEND，10．0，ØUTPUT，1．0 \＄CめNTRめL CめNSIANTS
$1,10,2,3,3,7,4,8$
\＄INTEGERS 5，1．，6，1．E3，7，1．E－3 \＄FLめATING PфINT 8，TEMP，9，ALPHA \＄ALPHA－NUMERIC
END

Array Data Block

Array data is exceedingly simple to input．The user inputs an array number，sequentially lists his information and terminates it with an END（data END，not mnemonic）．Numerous subioutines （interpolation，matrix，etc．）require that the exact number of values in an array be specified as an integer．In order to reduce the number of subroutine arguments and chance of error，the CINDA－3G preprocessor counts the number of values in an array and supplies this integer count as the first value in the array．The writeup of any subroutine whose array arguments require the array integer count will list the array argument as $A(I C)$ ．Subroutines whose array arguments require the first data value rather than the integer count will list the array argument as $A(D V)$ ．When η user inputs the array number as positive，the integer count is calculated by the preprocessor and supplied as the first value in the array．For example：

Col 12

$$
1.1 .6,2.4,3.8, \mathrm{END}
$$

Array 1 above contains three data vaiues and was input as a positive array．By addressing Al as a subroutine argument the integer count 3 would be the first value followed by $1.6,2.4$ and 3．8．If the user wantec the 1.6 data value to be addressed the argument should be Altl．The user has the option of placing a minus sign on the input array number．In this event the integer count of data values in the array is not calculated or stored and addressing the array as Al obtains the first data value for exampie；

Col 12

$$
-2,1.6,2.4,3.8, \text { END }
$$

Inputing the argument A2 would address the 1.6 data value；the integer count is not available．The following is an example of various types of arrays．

Col 8
BCD 3ARRAY DATA
1,1.6,2.4,3.8, END
2,TEMP1,TEMP2,END
3
BCD 3TEMPERATURE STUDY END
-4,SPACE, 100,END END
\$FL \varnothing ATING P \varnothing INT NUMBERS
\$ALPHA-NUMERIC
\$ALPHA-NUMERIC
\$SFACE $\not \subset \mathrm{PTI}$ 功

Two types of alpha-numeric input are shown above. The first allows each word to be separated by a comma, requires each word to start with a letter and does not allow the use of blanks. The second requires use of the BCD mnemonic code and the integer word count. It allows use of letters, numbers or characters anywhere and retains blanks. The space option is an easy way for the user to specify a large number of locations which are initialized by the preprocessor as floating point zeros. The space option requires the word SPACE followed by the number of locations to be initialized. It may be used anywhere in an array and as many times as desired as long as total available core space is not exceeded.

Program Control

Aside from the title block, there are either two or four data blocks depending upon whether the problem is GENERAL or THERMAL respectively. No matter which, there are also four operations blocks entitled EXECUTI身, VARIABLES 1, VARIARLES 2 and CUTPUT CALLS. The operstions or instructions called for in these blocks determine the program control. They are preprocessed by CINDA-3G and passed on to the system F\&RTRAN compiler as four separate subroutines entitled EXECTN, VARBLI, VARBL 2 and $\emptyset U T C A L$ respectively. When the FøRTRAN compilation is successfully completed, control is passed to the EXECTN subroutine which sequentially performs the operations in the same order as input by the user in the EXECUTI\#N block. Nons of the operations specified in the other three blocks will be performed unless they are called for, either directly by name in the EXECUII $/ \mathrm{N}$ biock or internally by some other called for subroutine.

No operations will be performed unless requested r_{j} the user and no control constants will be utilized unless some subroutine calls upon them. Network solution subroutines internally call upon VARBLI, VARBL2 and CUTCAL (see Figure F3, page 3.12). They also use numerous control

Abstract

constants but their individual writeups in Section 5.1 must be consulted in order to determine which ones and their exact usage. Network solution subroutines require no arguments but most others do. These arguments may be addresses which refer to the location of data or they may be literals; i.e., the actual data value. All of the input data can be addressed by using alphanumeric arguments of the following form.

TN for the temperature location of node N
CN for the capacitance location of node N
QN for the source location of node N
$G N$ for the conductance location of conductor N
KN
AN
for the value location of constant N
and control constants utilize their individual nemes.

When addressing arrays the user must be. cautious as to the use of positive or negative arrays and address them accordingly. However, the user may uniquely address any item in an array. For instance, the one hundredth value in a positive array ten could be uniquely addressed as AlO+100. . The above plus option is orly available for arrays. If perhaps a user desired to address the twenty BCD words for the title block which were retained for output page headings, he could do so by using the argument HI .

Dynamic Storage Allocation is a unique feature of the CINDA-3G program. Although not carried to the ultimate, all subroutines which require working space generally obtain it from a common working array. However, it is up to the user to specify information about this array to the program. To do so the user must place three FORTRAN cards at the start of the execution block, for example,

Col 1	7
F	DIMENSI fN X(100)
F	NDIM $=100$
F	NTH $=0$

The names used must be exactly as shown and in the above would cause a working array of 100 locations to be created. If more or less locations are needed the integer 100 may be changed as desired (both first and second cards). If no working locations are required the cards may be omitted. The program user must check the writeups of subroutines he is using in order to determine if, when and how much of a working array is required.

An F in column one indicates to the preprocessor that the card is FøRTRAN and should be passed on as received. This F option allows the user to program FøRTRAN operations directly into the operations blocks. However, the CINDA-3G arguments listed above are not FDRTRAN compatible with the exception of the control constant names. Therefore, it is recomended that the program user utilize CINDA-3G subroutine calls wherever possible. This is impossible however when logical operations are required. In this case it is recommended that the user place CINDA-3G data values as needed into the available dummy cortrol constant names allowed for that purpose. Then, FDRTRAN logical operations can be utilized with the durmy control constant names as arguments. FORTRAN statement numbers for routing purposes may be placed in columns two through five on any operations cards.

The data field for node, conductor, constant and array data consists of columns twelve through eighty. However, the data field of operations cards ends with column seventy-two. In a manner of speaking, a CINDA-3G subrcutine call is a special array ard should terminate with a data END. In order to simplify input for the user, the operations read subroutines recognize two special characters; the left and right paranthesis. The left paranthesis is accepted as a comma while the right paranthesis is accepted as a comma followed by a data END. This allows what would have been this

Col 12 ADD, K1,K2,K3,END
to be more esthetically formatted as this
Col 12
$\mathrm{ADD}(\mathrm{K} 1, \mathrm{~K} 2, \mathrm{~K} 3)$
which is almost identical to a $\mp \varnothing$ RTRAN subroutine call.

Execution Operations Block

An execution operation block might be as follows:
Col 1812
BCD 3EXECUTI我
F DIMENSION X(25)
F NDIK $=25$
F NTH=0
F 10 TIMEND $=$ TIMEND +1.0
CNFRWD
\$EXPLICIT FXAWARD DIFFERENCIMG STFSEP(T20,TTEST) \$PIACE T10 INT \varnothing DUMMY CC
F IF(TTEST.LE.100.) Gø Tø 10 END

The above indicates a transient thermal problem in which the user desires to terminate the analysis when the temperature at node 20 exceeds one hundred degrees．The problem must have been fairly small because only twenty five working locations were dimensioned and CNFRWD requires one per node．It does demonstrate the use of both CINDA－3G calls and FØRTRAN operations and that control constants are referred to by name in either．Another example might be

```
Col 1 8 12
            BCD 3EXECUTIDN
    F DIMENSI和 X(500)
    F NDIM=500
F NTH=0
            CINDSL $STEADY STATE (USES LPCS)
        F TIMEND=10.0
                    CNFRWD $TRANSIENT ANALYSIS (USES SPCS)
        END
```

In this case the user desires to have a steady state analysis performed on the network and then a transient analysis performed utilizing the steady state answer as initial conditions．However，the two network solution subroutines referred to are incompatible in their pseudos compute sequence requirements and the program would be terminated with an appropriate error message．A further example might be：

Col 812
BCD 3EXECUTI年
INVRSE（A1，A2）\＄SEE MATRIX SUBR內UTINE MULT（A2，A3）
$\operatorname{LIST}(A 2, K 1,17)$
\＄WRITEUPS FKR \varnothing PERATI $\phi N S$
LIST（A3，K2，17） \＄PERFØRMED

END
The above problem＇consists entirely of matrix operations and therefore is run as a GENERAL．The subroutines do not require any working space so none has been dimensioned．Furthermore，no reference，direct or indirect，is made to VARBLL，VARBL2 or ØUTCAL and those operations blocks should be empty．Even though they may be empty or not referred to，their blockheader and menonic END cards must still be input．

There is no end to the variety of examples that could be generated． In reality，the program user is actually programming although it is somewhat disguised as data input．However，the program does simplify the task of data logistics and automates overlay，tape library，and other systems features thereby greatly lessening the programing knowledge which might otherwise be required of a user．

CINDA-3G

A point well worth considering is proper initialization. All instructions contained in the other three operations blocks are performed each iteraticn or on the outnut interval. If an operation being performed in Variables 1 is utilizing and producing non changing constants, it should be placed in the Execution block (prior to the network solution call) so that it will be performed only once. Input arrays requiring post-interpolation multiplication for units conversion only could be prescaled, thereby deleting the multiplication process. Complex functions of a single independent variable requiring several interpciation values which are then combined in a multiplicative fashion can be precalculated versue the the independent variable. Such a precalculated complex function reduces the amount of work performed during the transient analysis. A great many operations of this type can be performed in the Execution block prior t ? for a transient analysis. Also, output operations to be performe wice the transient analysis is completed may be placed directly into the Execution block following the transient network solution call.

Variables 1 Operations Block

The statement that this program solves nonlinear partial differential equations of the diffusion type is not quite accurate. In reality the program only solves linear equations. However, nonlinearities are evaluated at each computation interval and in this manner generally yield acceptable answers to nonlinear problems. This method is more properly termed quasilinearization. The Variables 1 operation block allows a point in the computational sequence at which the user can specify the evaluation of nonlinear network elements, coefficients and boundary values (see Figure F3). The CGS and CGD memonic codes utilized for node and conductor data cause the constmiction of various subroutine calls which are placed in this block by the CINDA-3G preprocessor. The user must specify any addit onal subroutine calls necessary to completely define the network prior to entering the network solution phase.

Prior to inclusion of the CGS and CGD memonic codes, the Variables 1 operations block primarily consisted of linear interpolation subroutine calls input by the user for che evaluation of temperature varying properties. While these linear interpolation calls are automated through use of the CGS and CGD codes, it is up to the program user to
specify any required bivariate or trivariate interpolations or other functional evaluations necessary．Just prior to performing the Variables 1 operations，all network solution subroutines zero out all source locations．Therefore，the user is required to specify constant as well as variable or nonlincer impressed sources in this block．A Variables 1 operations block could be as follows：

Col 1
8.72

BCD 3VARIABIES 1 STFSEP（10．0；Q17）\＄CøNSTANT IMPRESSED SøURCE DIDECI（TIMEM，A8，Q19） D2D1WM（T18，TIMEM，A19，7．63，G18）\＄BIVARIATE FUNCTION F TTEST＝11．6 F IF（TIMEN．GT．10．）TTEST＝0．0 STFSEP（TTEST，Q27）
\＄VARIABLE SXURCE
END
The first call above places a constant heating rate of 10.0 into the source location of node 17．The second call causes a linear interpolation to be performed on array 8 using mean time as the indepen－ dent variable to obtain a time varying 14 ating rate for node 19. The third call uses mean time and the temperature at node 18 as independent variables to perform a bivariate interpolation．The interpolated answer is then multiplied by 7.63 and placed as the conductance value of conductor 18．The next two cards are FøRTRAN and allow a value of 11.6 to be placed into control constant TTEST until TIMEN exceeds 10.0 after which a value of 0.0 is placed into TTEST．This amounts to a single step in a＂stair－case＂function． The last card places the value from TTEST into the source location for node 27．Another sample Vamiables 1 block might look as follows：

Col 1
$8 \quad 12$
BCD 3VARIABIES 1
BLDARY（Al2＋1，T1，T7，T3，T4）\＄CめNSTRUCT VECTøR DIDEGI（T7，A19，A13＋2） IRRADE（A7，A13，A10，A12）
 BRKARI（A12＋1，Q1，Q7，03，Q4）
\＄IR RADIDSITY EXPLICIT DIDIWM（TCMEM，A9， 0.35 ，TTEST） ADD（TTEST，Q1，Q1）
\＄DISTRIBUTE Q RATES
\＄INTERP和ATE
\＄ADD TW中 RATES
END
The first call above causes the construction of an array of four temperature values necessary as input to an infrared radiosity subroutine（third card）．The second call causes the linear interpolation
of a temperature varying property from array 19 to be placed into array $13+2$ which is the second array argument for the radiosity call. This second argument must be an array of surface emissivities for the surfaces under consideration; therefore array 19 must be an array of temperature varying emissivity. The BRKARY call takes data values from array $12+1,2,3$ and 4 and places them into the source locations for nodes 1, 7, 3 and 4 respectively. The fifth call performs linear interpolation on array 9 using THAEM as the independent variable, multiplies the result by 0.35 and places it in control constant TTEST. This might be a time varying solar heating rate where 0.35 is the solar absorbtivity. The ADD call adds this rave to what is already contained in the source location for node 1. Each node has one and only one source location. If a user desires to impress more than one heating rate on a node, he must sum the rates and supply the value to the single source location available per node.

The Variables 1 operations block is the logical point in the network computational sequence for the calculation of impressed sources whether they are due to internal dissipation of powered components, radiation depositation, aerodynamic heating or orbital heating. If a desired subroutine is not available, the user may always add his own; data commonication is obtained through subroutine arguments as in any other subroutine.

Variables 2 Operations Block

In regands to the network solution, the Variables 1 operations may be thought of as pre-solution operations and the Variables 2 operations as post-solution operations. In Variables 1 the network was completely defiraed with respect to nonlinear elements and boundary conditions. Variables 2 allows the user to look at the just solved network. He may meter and integrate flow rates, make corrections in order to account for material phase changes or compare just calculated answers with test data in order to derive emperical relationships. A simple Variables 2 operations block might be as follows:

Col $8 \quad 12$
BCD 3VARIABLES 2 QuETER(T1,T2,G1,K1) QINTEG(K1,DTIMEU,K2) RDTMQS (T5,T1,G8,K3) QINTEG(K3, DTIMEU , K4) $\mathrm{ADD}\left(\mathrm{K} 2, \mathrm{~K}_{4}, \mathrm{~K} 5\right)$
END
\$METER HEAT FLДW
\$INTEGRATE HEAT FL/DN
\$4ETER RADIATI/AN FL/DW
\$INTEGRATE RADTANT FL/ $/$ W

The first call measures the heat flow from node one to node two through regular conductor one and stores the result in constant location one. The second call performs a simple integration with respect to time and sums the result into constants location two. The third call measures heat flow through a radiation conductor which is then integrated by the fourth call. The sum of. the two integrations is obtained by the fifth call. Another Varables 2 operations biock might be as follows:

Col 812
BCD 3VARTABLES 2

END
Phase change subroutines such as the above are unique in that they perform automatic corrector operations. Node 15 has been solved by the network solution subroutine as though no ablative existed. The ABLATS subroutine then corrects the temperature at node 15 to account for the ablative material. It does this by calculating the average heating rate to node 15 over the time step just performed and utilizes it as an inner surface boundary condition for the internally constructed 1-D network representation of the ablative material. The correctness of this analytical approach can be rigorously substantiated for use with explicit network solution subroutines. However, when used with large time step implicit methods it yields a controlled instability and the results may be questionable. It is up to the user to determine the solution accuracy by whatever means available. A more complicated Variables 2 operations block could be as follows:

		BCD 3VARIABLES 2	
		DIDEGI(THEN, AIO,K8)	\$GET TEST TEMPERATURE
		SUB (T8,K8, TTEST)	\$ bitain $^{\text {TEAPP }}$ DIFFERENCE
F		IF(TTEST.LE.2.0) G \varnothing T 10	
		MLTPİ(G7,0.99,G7)	\$REDUCE C¢ALUUCTANCE
	5	STFSEP($-1.0, \mathrm{BACKUP}$)	\$SET BACKUP NøN-ZERめ
F		Gф Tø 20	
F	10	$\begin{gathered} \text { IF(TTEST.GE.-2.0) Gф Tø } 15 \\ \operatorname{MLTPLY}(G 7,1.01, G 7) \end{gathered}$	\$INCREASE C¢NDUCTANCE
F		$G \varnothing T \varnothing 5$	
	15	QMETER(T8,T15,K9)	
		QINTEG(K9,DTIMEU,K10)	
F	20	CANTINUE	
		END	

CDDAA-3G

This corresponds to a portion of a network as follows:

Array 10 is a time-temperature tesi history of node 8 and node 15 is a known boundary reference temperature. The problew is to calculate the value of conductor seven which will yield a calculated temperature at node eight that is within ± 2.0 degrees of the test history. The above Varialles a cperations will attempt to modify conductor seven so that it will meet the constraints on temperature eight. It is quite "brute-force" and unsophisticated. However, the corrector npertions are at the descretion of the user. If the tolerances were too severc or the correction operations too strong the correction for one tolerance could lead to dissatisfaction of the other and an impasse result. If the reference temperature at node 15 were incorrect, possibly no value of conductor seven would satisfy the constraints. The end result of such a study would be to produce a plot of conductance seven versus time which could be used to derive an emperical relationship with other parameters. Too wide a tolerance would cause the plot to resemble a stair-case function. Please note that either condition being unsatisfied causes control constant BACKJP to be set non-zero and the iteration to be redone with the corrected conductor seven value. Only when all criteria are met are the metering and integration operations performed.

Output Calls Operations Block

This operations block could have been entitled Variables 3 but Output Calls seemed more appropriate. In it a user may call upon any desired subroutine. However, its contents are performed on the output interval (see Figure F3) so it is only logical that it would primarily contain instructions for outputing information. There is a variety of output subroutines offering the user several format notions. A very simple Output Calls block would be as follows:

```
Col 812
BCD 3đUTPUT CALLS PRNTMP END
```

The above call will output certain time control information and the temperature of every node in the neiwork under consideration. The node temperatures will correspond to the relative node numbers set up by the preprocessor, not the actual node numbers set by the user. The preprocessor lists out all of the input data. Immediately after the input node data a dictionary of relative node numbers versus actual node numbers is listed. By utilizing it a user can correlate the relative node temperatures with his actual numbers.

In addition to the various subroutines for printing output, there are several plotting subroutines available. However, the plotting subroutines require that the information to be plotted exist as arrays. In order to plot transient temperatures versus time it is necessary for the user to store the information until the transient is completed and then prform plotting. The operations to do this could be as follows:

```
Col }8\quad1
    BCD 3øUTPUT CALIS
        PRNTMP
        INDEX(K10,1)
        ST\varnothingARY(KIO,AL,TIMEN)
        ST\varnothingARY(K10,A2,T1)
        END
```

The Output Calls will be performed at problem start time and on the output interval until problem stop time is reached. A 100 minute transient with an output interval of 5 minutes would cause the Output Calls operations to pe performed 21 times. With constant ten initially at zero, the INDEX call will add an integer one to it each time it is performed. The ST \varnothing ARY call causes the third arguments (TMMEN and TI) to be stored into the Kloth location of array one and two respectively. Therefore, A1 and A2 must contain at least as many dats locations as required to accommodate the STØARY operations. When the transient analysis is completed, A1 and A2 contain array data suitable for plotting or printing in a columar format. Such operations are easily called for in the Execution Operations Block immediately following the network solution call.

The above data and operations blocks constitute a problem data deck which must be terminated by the following card:

Col 812
 BCD 3END фF DATA

CINDA-3G

Parameter Runs

Parametric analysis which do not involve network or operations changes to the original problem may be performed on the same computer run. Only data valves such as output page heading, temperatures, capacitances, conductances, constants and arrays may be changed. The data change blocks must all be specified whether changes occur in the block or not and the data input is identical to the preceeding discussion with the exception of conductors. When specifying new conductances the adjoining node information is deleted; only the conductor number and value are required.

Two parametric run options are available, INITIAL and/or FINAL, and they may be used several times within the problem data deck. The problem data deck as initially input is referred to as the original problem. Any and all INITIAL parameter runs refer to it exactly as it was input. The FINAL parameter run refers to the just completed problem exactly as terminated. When two INITIAL parameter runs are attached to the end of a problem data deck, they both refer to the original problem at start time. However, when two FINAL parameter runs are attached to the end of a problem data deck, the first refers to the original as terminated, and the second refers to the first FINAL parameter run as completed. The CINDA-3G control cards necessary to specify a parameter run as follows:

Col 8	12
BCD	3INITIAL PARAMETERS
or BCD	3FINAL PARAMETERS
END	
BCD	3NØDE DATA
END	
ECD	3cdadductyr dama
END	
BCD	3CØNSTANTS DATA
END	
BCD	3ARRAY DATA
END	

The parameter run decks are inserted in the problem data deck imediately preceeding the BCD 3END ØF DATA card. After the BCD parameter card, the user may inseit additional BCD data to replace the original problem outpat page heading. When changing an array, the entire new array must be input and be exactly the length of its original. Parameter runs conserve machine time mainly due to not having to reform the pseudo-compute sequence. If a user desires, he may accomplish FINAL parameter runs by calling the network execution subroutine twice in the EXECUTIDN block and inserting the necessary calls to modify data values between them.

Store and Recall Problem Options

The capability to store complete problems on and recall them from magnetic tape is a useful feature of CINDA-3G. While the parameter run capability is useful for performing parametric analysis in the same run, the store and recall capability allows an indefinite time lapse between parametric analysis. In addition, long duration problems may be broken into several short duration runs. If a parametric analysis is such that the first portion of the runs are identical, then the problem can be run for the constant portion, stored and then recalled as many times as necessary.

The store problem feature is achieved by a user initiated subroutine call which is as follows:

Col 12 ST才REP (KX)
where $K X$ refers to a constant location containing an alphanumeric identification name for the stored problem. The call may be used as many times as desired but the user must insure that each activation references a unique name. It is up to the user to insu'e that the stored problem tapes have been mounted with the "write" ring in, are properly positioned and that the computer operator has been instructed to save the tapes. The user should check Section V, Control Cards and Deck Setup, to determine which tapes his problem is being stored on and the control cards if any for assigning it within the system.

The recall problem feature is a CINDA-3G preprocessor option which is activated by the following card:

Col 113
RECALL AAAAAA
where AAAAAA is the alphanumeric identification name of tine stored problem. This single card replaces the blank card preceeding the problem data deck and must be followed by initial parameter and block data change cards exactly as shown for parameter runs, including the first BCD 3 parameter and END cards and also the BCD 3END ϕF DATA card. The stored problem identified will be searched for and brought into core from the two storage tapes. Any data changes specified will be performed and then control is passed to the first subroutine call in the EXECUTIDN block. The user must remember that the recalled problem contains the STXREP call. The user is again advised to consult Section V for the tape unit designstions, control card requirements and operator instructions necessary for mounting the stored problem tapes.

SECIION V

CONTROL CARDS AND DECK SETUP

UNIVAC-1108 Deck Setup NASA Houston

The EXEC-II, CUR and FØRTRAN V systems software for the UNLTAC-1108 are well suited for operation of the CINDA-3G program. The two portions of the program, Preprocessor and Variables, are contained in binary on magnetic tape as files one and two respectively. The user must instruct the operator to mount the tape on drive G. The I symbol indicates a seven and eight punch in the card column. The deck setup is as follows:

It is recommended that the CINDA-3G user acquaint himself with the CUR operating system and the bastes of FqTRRAN V, in particular, logical IF statements.

The operator instruction ticket accompanying the job sיrst have the RXXXXX designated as input on ì and request K as a scratch tape. This job's competable with all the varioun 1108 syatems at MSC and is required to be run under the FhatiAl ∇ syatem.

NOTE: The latest CINDA-3G reel number may be obtained from R. L. Dotts, phone 483-2378.

UNIVAC-1108 Tape Usage NASA Houston

UNIT	FORTRAN	PROGRAM	
DESIGNATION	NUMBER	VARIABLE	FUNCSION
B	2	LUT3	Copy of oricinal problem data.
C	3	LUT4	Parameter ciange data.*
D	4	LUT1	Data number definitions.
F	8	LUT2	NA-NB pairs; data number definitions from pa: ameter changes.
G	9	--m	CUR(IN) CINDA-3G Master tape.
H	10	-	CUR(фUT), if any.*
J	12	LB3D	Data tape (original problem and all parameter changes).
K	13	LBLP	Program tape (contains generated Fortran routines; LINKO, EXECTN, VARBLL, VARBL2, VUTCAL $^{(1)}$
M	15	LUT7	Variables 1 calls generated from node and conductor data blocks.*
N	16	INTERN	Data conversion scratch tape
	17		System plot tape (Restricted use)
R	21	--	Problem recall data tape.*
S	22	----	Problem store data tape.*
Reread	30	KRR	Fortran reread unit.

*These tapes need not be assigned if the particular options are not used. The STØREP option requires assigning and saving tapes 4 and 22. The RECALL options requires assigning and mounting the above tapes on 4 and 21 respectively.

UNIVAC-1108 Deck Setup NASA Michoud

The EXEC-II, CUR and FØRTRAN V systems software for the UNIVAC-1108 are well suited for operation of the CINDA-3G program. The two portions of the program, Preprocessor and Variables, are contained in binary on magnetic tape as files one and two respectively. The user must instruct the operator to mount the tape on drive F. The ∇ symbol indicates a seven and eight punch in the card column. The deck setup is as follows:

```
Col 1 6 12
    \nabla RUN
    \nabla TPR
    \nabla ASG D=D,F=F,I=I,K=K, L = L
    \nabla XQT CUR
        TRW F
        IN F
    \ XQT CfOO45
        -blank card unless RECALL
        ~problem data deck through END \emptysetF DATA
    V XQT CUR
        ERS
        IN F
        TRI F
    \nablaN F\emptyset゙R,K LINKO
    \nablaN F\emptysetR,K EXECTN
    VN F&/R,K VARBLl
    FN F&R,K VARBL2
    \nablaN F\emptysetR,K \emptysetUTCAL
        ~"load and go" subroutines if any, with\nabla F\varnothingR crrds
    \nablaN XQT LINKO
    \nabla FIN
```

It is recommended that the CINDA-3G user acquaint himself with the CUR operating system and the basics of FgRTRAN V, in particular, logical IF statements.

The operator instruction ticket accompanying the job mast have the RXXXXXX designated as input on F. The job is compatable with all the various 1108 systems at Michoud and is required to be run under the FøRTRAN V system.

NOTE: The latest CINDA-3G reel number may be obtained from R. L. Thompsion, phone 255-64,48.

UNIVAC-1108 Tape Usage NASA Michoud

UNIT	FORTRAN	PROGRAM	
DESIGNATION	NUMBER	variable	FUNCTION
DRUM	2	LUT3	Copy of original problem data.
DRUM	3	LUT4	Parameter change data.
D	4	LUTI	Data number definitions.
DRUM	8	LUT2	NA-NB pairs; data number definitions from parameter changes.
F	9	-	CUR(IN) CINDA-3G Master tape.
G	10		$\operatorname{CUR}(\varnothing \mathrm{UT})$, if sny. *
I	12	LB3D	Data tape (original problem and all parameter changes).
J	13	---	System plot tape (restricted use).
K	14	LB4P	Program tape (contains generated Fortran routines; LINKO,EXECTN, VARBLL,VARBL2, ϕ UTCAL)
1	15	LUT7	Variables 1 calls generated from node and conductor data blocks.
DRUM	27	INTERN	Data conversion scratch tape.
R	21	---	Problem recall data tape.*
S	22	YPR	Problem store data tape. *
Reread	0	MRR	Fortran reread unit.

* These tapes need not be assigned if the particular uptions are not used. The STøREP option requires assigning and saving tapes 4 and 22. The RECALL options requires assigning and mounting the above tapes on 4 and 21 respectively.

CINDA－3G

Alphabetic Listing of Available Subroutines							
NAME	PAGE	NAME	Pf．GE	NAME	PAGE	NAME	PAGE
AABB	6.5 .7	CINDSR	6.1 .3	DID2WM	6.2 .3	ENTR \varnothing	INTERN
ABLATS	6.6 .4	CINDSS	6.1 .1	DIMDGI	6.2 .2	E¢F	6.4 .7
AB¢RT		CIVSIN	6.3 .14	DIMDG2	6.2 .3	EXPARY	6.3 .16
ACSARY	6.3 .15	CINTAN	6.3 .14	DIMIDA	6.2 .2	EXPNTL	6.3 .16
ADARTN	6.3 .10	CMPXDV	6.3 .18	DIMIMD	6.2 .2	FILE	6.5 .13
ADD	6.3 .3	CMFXMP	6.3 .18	DIMIWM	6.2 .2	FILTER	
ADDALP	6.5 .7	CMPXSR	6.3 .17	DIM2DA	6.2 .3	FITIT	
ADDARY	6.3 .3	CMPYI	6.3 .18	DIM2MD	6.2 .4	FIX	6．3．1
ADDFIX	6.3 .3	CNBACK	6.1 .8	DIM2WM	6.2 .4	FLIGHT	
ADDIN	6.3 .10	CNEXPN	6.1 .6	DIICYL	$6.2 .5^{\circ}$	FLIP	6.3 .1
AER \varnothing	INTERN	CNFAST	6.1 .5	DIIDAI	6.2 .1	FL¢AT	6．3．1
ALPHAA	6.5 .7	CNFPND	6.1 .4	DIIDIM	6.2 .4	FめPM	DTEEN
AMAT		CNFWBK	6.1 .7	DIIMCY	6.2 .5	F \varnothing PRM	INTERN
ARCC ${ }^{\text {S }}$	6.3 .15	CめIMAX	6.5 .2	DIIMDA	6.2 .2	FRAMEV	6．4．3
ARCSIN	6.3 .15	CDIMIN	6.5 .2	DIIMDI	6.2 .4	FRMFAC	INTERN
ARCTAN	6.3 .15	C $¢$ IMLT	＇6．5．6	D12CYL	6.2 .5	FUDGE	
ARINDV	6.3 .10	C\＆NE		D12MCY	6.2 .5	GARZAM	
ARYADD	6．3．3	CXANVEC		D12MDA	6.2 .3	GENALP	6.5 .1
ARYDIV	6.3 .6	C \varnothing FY	INTERN	D2DEGI	6.2 .8	GENARY	6.3 .7
A RYEXP	6.3 .16	C¢SARY	6.3 .14	D2DEG2	6.2 .8	GENCDI	6.5 .1
ARYINV	6.3 .10	CめSD	INTERN	D2DIWM	6.2 .8	GENM	INTERN
ARTMNS	6.3 .2	CROSS	INTERN	D2D2WM	6.2 .8	GENST	INTERN
ARYMPY	6.3 .5	CSGDMP	6.1 .5	D2MXD1	6.2 .8	GSIDPE	6.2 .6
ARYPLS	6.3 .2	CSQRI	6.3 .17	D2MXD2	6.2 .8	HANTIM	INTERN
ARYST \varnothing	6.3 .11	CVQIHT	6.2 .6	D2MXIM	6.2 .8	HEDC ${ }^{\text {L }}$	INTERN
ARYSUB	6.3 .4	CVQIWM	6.2 .6	D2MX2M	6.2 .8	H¢NEM	
ASNARY	6.3 .15	dAteup	INTERN	D3DEGI	6.2 .9	IEXPAN	INTERN
ASSMBL	6.5 .6	DAllCY	6.2 .5	D3D1WM	6.2 .9	INDEX	
ATAND ．	INTEEN	DAIMC	6.2 .5	EFACS	6.5 .4	INGRAT	
ATNARY	6.3 .15	DA12CY	6.2 .5	EFASN	6.5 .4	INTRFC	6．3．1
BCø ${ }^{\text {NE }}$		DA12MC	6.2 .5	EFATN	6.5 .4	INVRSE	6.5 .8
BENDIT		decay	INTERN	EFCDS	6.5 .4	IRRADE	6．6．2
BIVIV	6.6 .5	DIAG	6.5 .6	EFEXP	6.5 .5	IRRADI	6.6 .2
BKARAD	6.3 .7	DISAS	6.5 .6	TFFEMS	6.3 .21	ITERAT	INTERN
BLDARY	6.3 .7	DIVARY	6.3 .6	EFFG	6.3 .21	ITRATE	INTERN
BRKARY	6.3 .7	DIVFIX	6．3．6	EFIDG	6.5 .5	JACøBI	6.5 .10
BTAB	6.5 .7	DIVIDE	6.3 .6	EFPPW	6.5 .5	JøIN	6.3 .12
BVSPDA	6.2 .7	D P T T	INTERN	EFSIN	6.5 .4	KERNEL	
BVSPSA	6.2 .7	DdJINT	INTERE	EFSQR	6.5 .5	KMAT	
BVTRN1．	6.2 .7	DIDEGI	6.2 .1	EFTAN	6.5 .4	IAGRAN	6.2 .1
BVTRN2	6.2 .7	DIDFig2	6.2 .3	ELEADD	6.5 .3	IGRNDA	6.2 .1
CALL	6.5 .13	DIDC：II	6.2 .4	ELEDIV	6.5 .3	LIMAT	
CAP	INTERN	DIDIDA	6.2 .1	ELEINV	6.5 .3	LTNE	
CDIVI	6．3．18	DIDIIM	6.2 .4	ELEMUL	6.5 .3	LININT	
CHANGE		DIDIMI	6.2 .4	EIRSUB	6.5 .3	LINRES	
CINC¢S	6．3．14	DIDIWM	6．2．2	ENDFIL	6.4 .3	LIST	6.5 .13
CINDSL	6.1 .2	D1D2DA	6.2 .3	ENDA¢ ${ }^{\text {d }}$	6.5 .13	I¢GE	6.3 .16

CNDA-3G

Alphabetic Listing of Available Subroutines (Continued)							
NAME	PAGE	NAME	PAGE	NAME	PAGE	NAME	PAGE
İGEAR	6.3 .16	PLYMML	6.3 .19	SETUP	INTERN	SYSTEM	
IфGT	6.3 .16	PNCHMA	6.4 .6	SHADdX	INTERN	SYSTRA	
IdgTar	6.3.16	PNTABL	6.6.4	SHFTV	6.3 .1	SYST2B	
IQDVAP	6.6 .5	PDIMLT	6.5 .9	SHFTVR	6.3 .1	SYSTLA	
LRMAT		PDLRES		SHIFT	6.5 .2	SYSTLB	
IStafe	6.5 .14	PØIS¢V	6.5 .9	SH¢CK	INTERN	SYST:	
ISTSQU	6.6 .1	PØIVAL	6.5 .9	SнфСкф	INTERN	TABIE	
MARGN	SC4020	PRAND	INTEFN	з $Н$ ¢С ${ }^{\text {N }}$	INTER	TANARY	6.3 .14
MASS	6.5 .11	PRESS	6.3 .21	SHUFL	6.5 .2	TDVEE	INTERN
MASSES		PRINT	6.4 .1	SIGMA	6.5 .1	TEMP¢	INTERN
Matrix	6.5 .5	PRINTA	6.4 .2	STMEQ	6.6 .1	TøPLIN	INTERN
MATVCA		PRINTL	6.4 .1	SIMP		TøRBIT	INTERN
MATVEC		PRNTMA	6.4 .2	SINARY	6.3 .14	TRANS	6.5.8
MAXDAR	6.3 .9	FENTMP	6.4 .1	SIND	INTERN	TRAP	
MLTPLY	6.3 .5	PSINTR	6.2 .6	SKPLIN	INTERN	TRNBVI	INTERN
M $¢ \mathrm{DES}$	6.5 .10	PSNTWM	6.2.6	SIDARD	6.3 .11	TRNBV2	INTERN
MPYA PY	6.3 .5	PS¢FTS		SLDARY	6.3 .11	TRNFRM	INTERN
MPYFIX	6.3 .5	PUNCH	6.5 .13	SLICE		TRNPRT	
MULT	6.5 .8	PUNCHA	6.4 .6	SLRADE	6.6 .3	TRP2DA	6.3 .20
MXDRAL	6.3 .9	PuMiti	INTERN	SIRADI	6.6 .3	TRPZD	6.3 .20
NBIANK	SC4020	QC¢NE	INTERN	SMøPAS	INTERN	TS¢FP	
NEWRT4	$=.3 .19$	QF¢RCE	6.3.13	SMPINT	6.3.20	UNPAK	INTERN
NEWTRT	6.3.19	QINCID	INTERN	SPLIT	6.3.12	UPDM ${ }^{\text {P }}$	INTERN
¢DDTIM	INTERN	QINTEG	6.3 .13	SPREAD	6.3.12	UNITY	6.5 .1
DNES	6.5 .1	QINTGI	6.3 .13	SPRESS	6.3.21	VAFicm	6.2.10
\emptyset PNPLT	6.1.3	QNETER	6.3 .13	SQRめdT	6.3 .17	VARCSM	6.2 .10
ØRBHET		QMTRI	6.3.13	SQR\%TI	6.3 .17	VARCI	6.2 .10
$\emptyset \mathrm{FBHT}$	INTERN	QUAD	INTER	SRSMI.	INTERN	VARC2	6.2 .10
¢RBVEC.	INTERN	RDTNQS	6.3 .13	SRSM.	DITERN	VARGCM	6.2 .10
$\emptyset \mathrm{RIENT}$	INTERN	READ	6.4 .7	STAGHT	DTTERN	VARGSM	6.2 .10
PARCHL		READAB		STAGP	INTERN	VARGI	6.2 .10
PLDT	6.5 .13	RECOVL	INTERN	STATE		VARG2	6.2 .10
PL¢TLL		RECOVT	INTERN	Stati	INTERN	VIRLAM	INTERN
PI¢TLI	6.4 .5	REPLCT	6.5 .2	STAT2	INTERN	VISCTY	INTER
PLOTLL2	6.4 .5	REWIND	6.4 .7	STFSEP	6.3 .8	WEIGHT	
PLDTM ${ }^{\text {d }}$		RIGID		STFSEQ	6.3 .8	WIND	
PİTILI		RIGduT		STFSQS	6.3 .8	WNDIT	
PL $¢$ TXI	6.4 .4	R 20 ¢ TS		STIFF	6.5 .12	WRITE	6.4 .7
PI¢TX2	6.4 .4	R $¢$ WMLT	6.5 .6	STNDRD	6.4 .1	WRTA RY	TNTERN
PI¢TX 3	6.4 .5	RTP¢LY	INTERN	STøARY	6.3 .11	WRTL	INTERN
PIDTX 4	6.4 .5	Scaiar	6.5 .5	ST $¢$ REP	4.22	XMATCH	INTERN
PLDTZ		SCALE	6.3 .8	SUB	6.3.4	XX	
PI¢T6D		SCLDEP	6.9 .11	SUBARY	6.3 .4	ZERD	6.5.1
PLTBIV		SCIIND	6.3 .11	SUBFIX	6.3 .4		
PLIND	6.4 .3	SCRPFA	6.6 .3	SUMARY	6.3 .9		
PLYARY	6.3 .19	SETMNS	6.3 .2	STMDNV	6.6 .3		
PLYEVL	6.5 .9	SETPIS	6.3.2	SYMLST	6.6 .3		

Execution Subroutines

Name		Page
CINDSS	(Steady state, block iteration)	6.1 .1
CINDSL	(Steady state, accelerated)	6.1 .2
CINDSR	(Steady state, radiation dominated)	6.1 .3
CNFRWD	(Explicit forward differencing)	6.1 .4
CNFAST	(Accelerated forward differencing)	6.1 .5
CSGDP	(Network criteria and linkage)	6.1 .5
CNEXPN	(Explicit exponential prediction)	6.1 .6
CNFWK	(Inplicit forward-backward diff.)	6.1 .7
CNBACK	(Implicit backward differencing)	6.1 .8

CINDA-3G

EXECUTION SUBROUTTNE NAME:
CINDSS
PURPOSE:
This subroutine ignores the capacitance values of diffusion nodes to calculate the network steady state solution. Due to the SPCS requirement, diffusion nodes are solved by a "block" iterative method. However, if all diffusion nodes were specified as arithmetic nodes they would be calculated by a "successive point" iterative method. The user is required to specify the maximum number of iterations to be performed in attempting to reach the steady state solution (control constant NLD\&P) and the relaxation criteria which determines when it has been reached (DRLXCA for diffusion nodes and/or ARLXCA for arithmetic nodes). The subroutine will continue to iterate until one of the above criteria is met. If the iteration count exceeds NLゆф P an appropriate message is printed. Variables 1 and Cutput Calls are performed at the start and Variables 2 and Output Calls are performed upon completion. If not specified, control constants DAMPD and DAMPA are set at 1.0. They are used as miltipliers times the new temperatures while 1.0 minus their value is used as multipliers times the old temperatures in order to "weight" the returned answer. This weighting of so much new and so much cld is useful for damping oscillations due to nonlinearities. They may also be used to achieve over relaxation.

If a series of 's zady state solutions at various times are desired it can be accompl \because d by specifying control constants TREND and 申UTPUT. dUTPUT will be used both as the output interval and the computation interval. In this case appropriate calls would have to be made in Viriables 1 to modify boundary conditions with time.

If desired, the CINDSS call can be followed by a call to one of the transient solution subroutines which has the same SPCS requirement. In this manner the steady state solution becomes the initial conditions for the transient analysis. However, since CINDSS uiilizes control constants TIMEND and фUTPUT the user mus: specify their values in the execution block after the steady state call and prior to the transient analysis call.

RESTRICTIONS: The SPCS option is required. Diffusion ncdes receive a "block" iteration while arithmetic ncdes receive a "successive point" iteration, no acceleration features are utilized. Control constants NIdøP and DRLXCA and/or ARLXCA must be specified. Successive steady state solutions can be obtained by specifying control constants TIMEND AND ØUTPUT. Other control constants which are activated or used are; LDØFCT, DRIXCC and/or ARLXCC, TMEN, TIMEM, TDEW, DAMPD, DAMPA, DTIMEU, LINECT and PAGECT. Control constant \varnothing PEITR is checked for output each iteration.

CALLING SEQUENCE:
CINDSS
\#This subroutine utilizes one dynamic storage core location for each riffusion node.

EXECUTION SUBROUTTNE NAME:

CINDSL

PURPOSE: This subrcutine ignores the capacitance values of diffusion nodes to calculate the network steady state solution. Since this subroutine has the LPCS requirement, both diffusion and arithmetic nodes receive a "successive point" iteration. In addition, each t'ird iteration a linear extrapolation is performed on the error function plot of each node in an attempt to accelerate convergence. The user is required to specify the maximum number of iterations to be performed in attempting to reach the steady state solution (control constant NLD ϕ P) and the relaxation criteria which determines when it has been reached (DRLXCA for diffusion nodes and/or ARLXCA for arithmetic nodes). The subroutine will continue to iterate until one of the ahove criteria is met. If the iteration count exceeds NID申P an appropriate message is printed. Variables 1 and Output Calls are performed at the start and Variables 2 and Output Calls are performed upon ccmpletion. If not specified, control constants DAMPD and DAMPA are set at 1.0. They are used as multipliers times the new temperatures while 1.0 minus their value is used as multipliers times the old temperatures in order to "weight" the returned answer. This weighting of so much new and so much old is useful for damping oscillations due to nonlinearities. They may also be used to achieve over relaxation.

If a series of steady state solutions at various times are desired it can be accomplished by specifying control constants TDEND and ØUTPUT. CUTPUT will be used both as the output interval and the computation interval. In this case appropriate calls would have to be made in Variables 1 to modify boundary conditions with time.

If desired, the CINDSL call can be followed by a call to one of the transient solution subroutines which has the same LPCS requirement. In this manner the steady state solution becomes the initial conditions for the transient analysis. However, since CINDSL utilizes control constants TIMEND AND ØUTPUT the user must specify their values in the execution block after the steady state call and prior to the transient analysis call.

RESTRICTIONS: The LPCS option is required. Diffusion and arithmetic nodes receive a "successive point" iteration and an extrapolation method of acceleration. Control constants NLD $\varnothing \mathrm{P}$ and DRLXCA and/or ARLXCA must be specified. Successive steady state solutions can be obtained by specifying control constants TIIEND and 耳UIPUT. Other controi constants which are activated or used are; I ϕ (PCT, DRLXCC, ans/or ARLXCC, TDEEN, TMMPM, TIMED, DAMPD, DAMPA, DTIMED, LINECT and PAGFCT. Control constant ØPEITR is checked for output each iteration.
*This subroutine utilizes two dynamic storage core locations for each diffusion and arithmetic node.

EXECUTION SUBROUTINE NAME:

CINDSR
PURPOSE: This subroutine is designed to calculate the network steady state solution of moderately radiation dominated problems. It is similar to CINDSL in that the LPCS option is required and that all nodes receive a "successive point" iteration and the same extrapolation method of acceleration. Other execution subroutines evaluate the nonlinear radiation conductor: each time they are encountered during an iteration. CINDSR differs in that it linearizes the problem by calculating effective radiation conductors and solves the linearized problem. It then reevaluates the effective radiation conductors, solves the linear problem and continuously repeats the process. The user must ,pecify the maximum number of iterations to perform in attempting to reach the steady state solution and the energy balance of the system to be satisfied as a criteria. This system energy bal. ve is the difference between all energy into the system and all energy out and is specified as control constant BALENG. CINDSR internally calculates the iterative relaxation criteria damping factors and loopings to be performed in sclving the linearized problem. It continuously increases the sever. of the relaxation criteria until the BAIENG criteria is met for two successive linearized problems with virtually no temperature change between the two. Systems with small energy transfer rates to the boundaries are difficult to solve. A reasonable rule is to set BALENG at 1% of the rate in or out. Successive steady state analysis may be performed and CINDSR may be followed by a call to a transient analysis routine with the same LPCS option requirement.

RESTRICTIONS: The LPCS option is required. Control censtants NL $\varnothing \varnothing \mathrm{P}$ and BAIENG must be specified and greater than zero. Successive steady state solutions can be obtained by specifying control constants TIMEND and QUTPUT. Other control constants which are activated or used are: L $\varnothing \not \varnothing$ PCT, ENGBAL, DRLXCC and/or ARLXCC, TIMEN, TIMEM, TDME \varnothing, DTIMEU, LINECT and PAGECT. Control constant \emptyset PEITR is checked for output each iteration. Caution: Each radiation conductor must have a unique conductor number.

CALLING SEQUENCE:

CINDSR
*This subroutine utilizes 3 dynamic storage core locations for each diffusion and arithmetic node and one more for each radiation conductor.

EXECUTION SUBROUTINE NAME:
 CNFRWD

PURPOSE: This subroutine performs transient thermal analysis by the explicit forward differencing method. The stability criteria of each diffusion node is calculated and the minimum value is placed in control constant CSGMIN. The time step used (control constant DTMEEU) is calculated as 95% of CSGMIN divided by CSGFAC. Control constant CSGFAC is set at 1.0 unless specified larger by the user. A "look ahead" feature is used when calculating DTMMEU. If one time step will pass the output time point the time step is set to come out exactly on the output time point, if two time steps will pass the output time point the time step is set so that two time steps will come cut exactly on the output time point. DTIMEU is also compared to DTTMEH and DTMEL. If DTMMEU exceeds DTINEH it is set equal to it, if DTIMEU is less than DTIMEL the problem is terminated. If no input values are specified, DTDEL is set at zero and DTMEH it is set at infinity. The maximum temperature change calculated over an iteration is placed in control constant DTMPCC and/or ATMPCC. They are compared to DTMPCA and/or ATMPCA respectively and if larger cause DTIMEU to be modified so that they compare as equal to or less than DTMPCA and/or ATMPCA. If DTMPCA and/or ATMPCA are not specified they are set at infinity.

All diffusion nodes are calculated prior to solving the arithmetic nodes. The user may iterate the arithmetic node solution by specifying control constants NLD \varnothing P and ARLXCA. If the arithmetic node iteration count exceeds NLD $\varnothing \mathrm{P}$ the answers are accepted as is, and the subroutine continues without any user notification. In addition the user may suecify control constant DAMPA in order to dampen possible oscillations due to nonlinearities. The arithmetic nodes may be used to specify an incompressible pressure or radiosity network. In this manner they would be solved implicitly each time step but evaluation of temperature varying properties would suffer a one time step lag.

RESTRICTIONS: The SPCS option is required and control constants
TIMEND and ØUTPUT must be specified. Problem start time if other than zem may be specified as TTME ϕ. Other cont:ol constants used or activated ars: TDEN, TIMEM, CSGMIN, CSGFAC, DTIMEU, DTMEL, DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, NL $\not \emptyset \not \subset$, $\perp \not \varnothing \varnothing$ PCT, DAMPA, ARLXCA, ARLXCC, \varnothing PETTR, BACKUP, LINECT and PAGECT.

GALLING SFQUENCE:
CNFRWD
*This subroutine utilizes one dynamic storage core location for each diffusion and arithmetic node.

FXFCITTION SUBROUTTNH NAME:
 CNFAST

PURPOSE: This subroutine is a modified version of CNFRND which alluws the user to specify the minimum time step to be taken. The time step calculations proced exactly as in CNFRND until the check with DTMEL is mide. If D'TMMU is less than DTMEL it is set equal to it. As sach node is calculat. d it.s CKGMIN is obtained and compared to DTIMEU. If equal to or grater, the nodal calculation is identical to CNFRND. If the Cocmin for a node is less than LTMEU the node recives a steady state calculation. If only a small portion of the nodes in a system receive the steady stit. calculation the answers are generally rasonable. However, as the number of nodes receiving steady state calculations increases, so do the erlution inacearacies.

RESTRTCTTON: : The SPCS option is required and control constants TIMEND ind dilT PUT must be specified. The check; on control constants DTMPCA, ATMPCA and BACKUP are not performed. Other control constante which are used or activated are: TIMEN, TIMEM, TIME \varnothing, CSGMIN, CSGFAC, DTMMEU, DTIMEL, DT TMFH, DTMPCC, ATMPCC, DAMPA, ARLXCA, ARLXCC, NL $\varnothing \varnothing$ P, L $\not \varnothing \varnothing$ PCT, LTNECT : ind PAGECT.

CALLING SEQUENCE: CNFAST
\#This subroutine utilizes one dynamic storage core location for each diffusion node.

FXFCUTION SUBROUTINE NAME:

CSGDMP

PURPOSE: This subroutine is designed to aid in the checkout of thermal problem data decks. It calls upon Variables 1 and Output Calls and then prints out each relative diffusion node number with the capacitance and CSGMIN value of the node. For each node it identifies the attached conductors by relative conductor number, lists the type and conductance value and the relative number and type of the adjoining nods. Either the SPCS or LPCS option may be used. While the LPCS option allows every conductor attached to a node to be identified, the SPCS option only identifies conductors for ${ }^{\text {n }}$ ne first relative node number, on which they occur. After the diffusion odes are proces ed the connection infor: tion for the arithmetic nodes is listed. After listing the above information control passes to the next sequentially listed subroutine.

RESTRICTIONS. This subroutine is generally called in the Execution block and possibly in Variables 2 but not in Variables 1 or Output Calls.

CALLING SEQJENCE:
CSGDMP

CINDA-3G

EXECUTION SUBROUTINE NAME:

CNEXPN
PURPOSE: This subroutine parforms transient thermal analysis by the exponential prediction method and the solution equation is of the following form:

$$
T_{i}^{\prime}=\left(\frac{\sum_{j} G_{j} T_{j} \quad Q_{i}}{\sum_{j} G_{j}}\right)\left(1-e^{-\frac{\Sigma G_{j} \Delta t}{C_{i}}}\right)+T_{i} e^{-\frac{\Sigma G_{j} \Delta t}{C_{i}}}
$$

The reader is referred to page 5.1 .3 of CCSD TN-AP-66-15 for the derivation. The above equation is unconditionally stable no matter what size time step is taken and reduces to the steady state equation for an infinite time step. However, stability is not to be confused with accuracy. Time steps larger than would be taken with CNFRND remain stable but tend to lose or gain energy in the system. For this reason this subroutine is not recommended where accuracy is sought. However, it is suitable for parametric analysis where trends are sought and a more accurate method will be utilized for a final analysis.

The inner workings of the subroutine are virtually identical to CNFRWD with the exception of the solution equation and the use of CSGFAC. The time step used (DTIMEU) is calculated as CSGMIN times CSGFAC. The look ahead feature for calculating the time step is identical as are the checks with DTMEE, DTIMEL and DTMPCA. The diffusion nodes are calculated pricr to the arithmetic nodes and the arittmetic nodes utilize NLD \varnothing P, ARLXCA and DAMPA exactly the same as CNFRND.

RESTRICTIONS: The SPCS option is required and control constants TTMEND and ØJTPUT must be specified. Problem start time if other than zero may be specified as TTMEX: Other control constants used or activated are: TDMEN, TDMEM, CSGMIN, CSGFAC, DTIMEU, DTIMEL, DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, ARLXCA, ARLXCC, DAMPA, ØPEITR, BACKUP; LINECT and PAGECT.

CALLING SEQUENCE:
CNEXPN
*This subroutine utilizes one dynamic storage core location for each diffusion and arithmetic node.

EXECUTION SUBROUTINE NAME:

CNFWBK

PURPOSE:

This subroutine performs transient thermal analysis by implicit forwardbackward differencing. The LPCS option is required and allows the simultaneous set of equations to be solved by "successive point" iterations. During the first iteration for a time step, the capacitance values are doubled and divided by the time step and the energy transfer rates based on old temperatures are added to the source locations. Upon completing the time step the capacitance values are returned to their original state. The iteration looping, convergence criteria and other control constant checks are identical to CNBACK. The time step checks and calculations and look ahead feature are identical to that used for CNBACK.

The automatic radiation transfer damping and extrapolation method of acceleration mentioned under the CNBACK subroutine writeup are also mployed in this subroutine. Diffusion and/or arithmetic terperature calculations may be damped through use of DAMPD and/or DAMPA respectively. Control constants BACKUP and ØFEITR are continuously checked. CNFWBK internally performs iorward-backward differencing of boundary conditions. For this reason the user should utilize TIMEN as the appropriate independent variable in Variables 1 operations.

It is interesting to note that CNFWBK generally converges in 25\% fewer iterations than CNBACK. The probable reason for this is that the boundary of the mathematical system is better defined. Thile every future i,emperature node under CNBACK is connected to its present temperature, under CNFWBK ever 'ture temperature node is also receiving an impressed scurce based on he present temperature.

RESTRICT:ONS:

The LPCS option is required. Control constants TTMEND, ØUTPUT, DTIMEI, iNL $\not \emptyset \mathrm{P}$ and DRLXCA and/or ARLXCA must be specified. Other control constants which are used or activated are: TMEN, TIME \varnothing, TTMEM, CSGMIN, DTIMEU, DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAMPD, DAMPA, DRLXCC and/or ARLXCC, $1 \not \varnothing \varnothing$ PCT, BACKUP, \varnothing PEITR, LINECT and PAGECT.

CALLING SEQUENCE:
CNFWBK
*This subroutine utilizes three dynamic storage core locations for each diffusion node and one for each arithmetic and boundary node.

EXECUTION SUBROUTINE NAME: CNBACK

PURPOSE:

This subroutine performs transient thermal analysis by implicit backwari differencing. The LPCS option is required and allows the simultaneous set of equations to be solved by "successive point" iteration. Each third iteration, diffusion node temperatures which trace a continuous decreasing slope receive an extrapolation on their error function curve in an attempt to accelerate convergence. For convergence criteria the user is required to specify NL申fP and DRIXCA and/or ARIXCA. If the numier of iterations during a time step exceeds NI $\varnothing \mathrm{P}$ a message is printed but the problem proceeds.

Viriables 1 is performed only once for each time step. Since this subroutine is implicit the user must specify the time step to be used as DTIMEI in addition to TIMEND and OUTPUT. The look ahead feature for the time step calculation in CNFRWD is usnd as are the checks for DTMMEH, DTMPCA and ATMPCA but not DTIMEL. Damping of the solutions can be achieved through use of control constants DAMPD and/or DAMPA. Control constants BACKUP and \varnothing PEITR are continuously checked.

Implicit methods of solution often oscillate at start up or for boundary step changes when radiation conductors are present. CNBACK contains an automatic damping feature which is applied to radiation conductors. The radiation transfer to a node is calculated for its present temperature and a temporary new temperature is calculated. Then the radiation transfer is recalculated and the final node temperature is calculated based on the arithmetic mean of the two radiation transfer calculations. This automatic radiation damping has proven to be quite successful and lessens the need for use of DAMPD and DAMPA.

RESTRICTIONS:

The LPCS option is required. Control constants TIMEND, đUTPUT, DTIMEI, NI $\varnothing \varnothing$ P and DRLXCA and/or ARIXCA must be specified. Other control constants which are used on activated are: TINFN, TIME, TMMEM, CSGMIr, DTIMEV, DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAMPD, DAMPA, DRIXCC and/or ARLXCC, I $\varnothing \varnothing \mathrm{PCT}, \mathrm{BACUP}, \emptyset \mathrm{PEITR}$, LINECT and PAGECT.

CALLING SEQUENCE:

CNBACK

Whis subroutine utilizes three dynamic storage core locations for each diffusion node and one for each arithmetic and boundary node.

Interpolation Subroutines

Names	Page
LAGRAN,LGRNTA, DIDEGI,DIDIDA	6.2 .1
	6.2 .2
D1DEG2,D1D2DA, D1D2WM, D12MDA, D1MDG2,D1M2DA	6.2 .3
D1M2WM, D1M2MD, D1DG1I, D1D1TM, D1D1MI, D1111AI,D11DIM, D11MDI	6.2 .4
D11CYL,DA11CY,D12CYL,DA12CY,D11MCY,DA11MC, D12MCY,DA12MC	6.2 .5
CVQ1HT,CVQIWM, GSIDPE,PSINTR,PSNTWM	6.2 .6
Bivariate Array Format	6.2 .7
BVSPSA, BVSPDA, BVTRN1, BVTRN2	6.2 .7
D2DEG1,D2DEG2,D2D1WM,D2D2WM,D2MVD1,D2MXD2,D2MX1M,D2MX2M	6.2 .8
Trivariate Array Format	6.2 .9
D3DEG1,D3D1WM	6.2 .9
VAPCSM, VARCCM, VARC , VARC2, VA.RGSM, VARCCM, VARG1, VAPG2	6.2 .10

SUBROUTINE NAMES:

IAGRAN or IGRNDA

PIJRPOSE:

These subroutines perform Lnrrangian interpolation of up to order 50. The first requires one doublet array of X, Y pairs while the second requires two singlet arrays, one of $X^{\prime} s$ and the other of $Y^{\prime} s$. They contain an extrapolation feature such that if the X vaiue falls outside the range of the independent variable the nearest dependent Y variable value is returned and no error is noted

$$
Y=\operatorname{Pn}(X)=\sum_{k=0}^{n} Y_{k} \prod_{\substack{i=0 \\ i \neq k}}^{n} \frac{Y-X i}{X k-X_{i}} \quad, n=1,2,3, \ldots, 50 \text { max. }
$$

RESTRICTIONS:
All values must be floating point except N which is the order of interpolation plus one and must be an integer. The independent variable values must be in ascending order.
CALLTMG SEQUENCE: IAGRAN(X,Y,A(IC),N) or $\mathcal{L} G R N D A(X, Y, A X(I C), A Y(I C), N)$

NOTE:
A doublet array is formed as follows:
$\mathrm{IC}, \mathrm{XI}, \mathrm{Y}, \mathrm{X} 2, \mathrm{Y} 2, \mathrm{X} 3, \mathrm{Y} 3, \ldots, \mathrm{XN}, \mathrm{IN}$
where IC $=2 * N$ ($6:$ by program)
and singlet arrays are formed as follows:

$$
\begin{aligned}
& I C, X 1, X 2, X 3, \ldots, X N \\
& I C, Y 1, Y 2, Y 3, \ldots, Y N \\
& \quad \text { and } I C=N \text { (set by proerm) }
\end{aligned}
$$

SUBROUTINE NAMES:
D].DEGI or D1D1DA
PURPOSE:
These subroutines perform single variable linear interpolation on doublet or singlet arrays respectively, They are self-contained subroutines that are called upon by virtually ell other linear interpolation subroutines.

RESTK_CTIONS:
All values must be floating point numbers. The X irsependent variable values must be in ascending order.
CALLING SEOUENCE:
D1DEGI ($X, A(I C), Y)$
or
DIDIDA (X,AX(IC) ,AY(IC) ,Y)

SUBROUTINE NAMES: DIDIWM or DIIMDA

PURPOSE:

These subroutines perform single variable linear interpolation by calling on DIDEGI or DIDIDA respectively. However, the interpolated answer is multiplied by the value addressed as Z prior to being returned as Y .

RESTRICTIONS:
Same as DIDEGI or DIDIDA and 2 must be a floating point number.
CALLING SEQUENCE:

$$
\begin{aligned}
& \mathrm{DIDIWM}(X, \mathrm{~A}(\mathrm{IC}), \mathrm{Z}, \mathrm{Y}) \\
& \text { or } \operatorname{DIIMDA(X,AX(IC),AY(IC),~} \mathrm{Z}, \mathrm{Y})
\end{aligned}
$$

SUBROUTINE NAMES: \quad DIMDGI or DIMIDA

PURPOSE:

These subroutines use the arithmetic mean of two input values as the independent variable for linear interpolation. They require a doublet or two singlet arrays respectively.

RESTRICTIONS:
See DIDEGI or DIDIDA as they are called on respectively.
CALLING SEQUENCE:

$$
\begin{aligned}
& \text { DIMDGI }(\mathrm{X1}, \mathrm{X} 2, \mathrm{~A}(\mathrm{IC}), \mathrm{Y}) \\
& \text { or } \operatorname{D1M1DA(X1,X2,AX(IC),AY(IC),Y)}
\end{aligned}
$$

SUBROUTINE NAMES:

DIMIWY or DMMMD

PURPOSE:

These subroutines use the arithretic mean of two input values as the independent variable for linear interpolation. The interpolated answer is multiplied by the Z value prior to being returned as Y.

RESTRICTIONS:
Same as DIMDG1 or LIMIDA and Z mist be a floating point number.
CALLING SEQUENCE:

$$
\begin{aligned}
& \operatorname{DIM1WM}(\mathrm{XI}, \mathrm{X} 2, \mathrm{~A}(\mathrm{IC}), \mathrm{Z}, \mathrm{Y}) \\
\text { or } & \mathrm{DIMIMD}(\mathrm{XI}, \mathrm{X} 2, \mathrm{AX}(\mathrm{IC}), \mathrm{AY}(\mathrm{IC}), \mathrm{Z}, \mathrm{Y})
\end{aligned}
$$

SUBROUTINE NAMES:

DIMZNM or D1MRMD

FURPOSE:

These subroutines use the arithmetic mean of two input values as the independent variable for parabolic interpolation. The interpolsted answer is maltiplied by the Z value prior to being returned as Y.

RESTRICTIOAS:
Same as DIMDG2 or DIM2DA and Z mast be a floating point number.
CALLITG SERUESCE:

$$
\begin{aligned}
& \quad \operatorname{DMEN}(X 1, X 2, A(I C), Z, Y) \\
& \text { or } \operatorname{DIMRAD}(X 1, X 2, A X(I C), A Y(I C), Z, Y)
\end{aligned}
$$

SUBFOUTDE RIME:
 TDGEI or D1DIM or D1DIMI

FURPOSE:

These subroutines perform single variable linear interpolation on an array of X's to obtain an array of I's. D101n mitiplies all interpolated values by a constant Z value while DIDIMI allows a unique Z value for each X value. They all call on D1DEG1.

FESTRTCTIOIS:

The number of input $X^{\prime} s$ must be supplied as the integer N and agree with the muber of I and \bar{Z} locations where applicable. Z values mast be floating point numbers.

CALITHG SEMUENCF:

$$
\begin{aligned}
& \operatorname{D1DG1I}(N, X(D V), A(I C), Y(D V)) \\
& \text { or } D 1 D 1 D N(N, X(D V), A(I C), Z, Y(D V)) \\
& \text { or } D 1 D 1 Y I(N, X(D V), A(I C), Z(D V), Y(D V))
\end{aligned}
$$

SUBROUTITE MAYES: D11DAI or D11DM or D11MDI

FURPOSE:

These subroutines are virtually identical to DIDGII, DIDIDM and DIDIMI respectively. The difference is that they require singlet arrays for interpolation and call on DIDIDA.

FESTRICTIONS:
Same as DIDGII, DIDIM and D1D1MI.
CAILTHG SEOUENCE:

$$
\begin{aligned}
& \text { D11DAI(N,X(DV),AX(IC),AY(IC),Y(DV))} \\
& \text { or D11DI(N,X(DV),AX(IC),AY(IC),Z,Y(VV))} \\
& \text { or } D 11 M D I(N, X(D V), A X(I C), A Y(I C), Z(D V), Y(D V))
\end{aligned}
$$

SUBROUTIDE NAMES:

DIACYL or DAIICY

PIRPOSE: These subroutines reduce core storage requirements for cyclical interpolation arrays. The arrays need cover one perird only, and the period (PR) must be specified as the first argument. Linear interpclation is perform d, and the independent variable must be in ascending order.

RESTRTCTIONS: All values must be floating noint. Subroutine INTRFC is called on by both DIICYL and DAllCY, then DiDESl or DIDIDA respectively.

CALLIMG SEQUENCE:

$$
\begin{aligned}
& \text { DIICYL(PR,X,A(IC),Y) } \\
& \text { or } \operatorname{LAllCY}(\mathrm{PR}, \mathrm{X}, \mathrm{AX}(\mathrm{IC}), \mathrm{AY}(\mathrm{Ir}), \mathrm{Y})
\end{aligned}
$$

SIBRROUTDE NAMES:
D12CYL or DAI2CY
HilPDSE: These subroutines are virtually identical to DilCYL and DAllCY s.xcript that parabolic interpolation is performed.

IfFSTRICTIOMS: See DIlCYL and DAllCY. Subroatines LAGRAN and IGRNDA respectively are called on.

CALLING SEQUENCE: \quad DIZCYL $(\mathrm{PR}, \mathrm{X}, \mathrm{A}(\mathrm{IC}), \mathrm{Y})$

$$
\text { or } \operatorname{DA} 12 C Y(P R, X, A X(I C), A Y(I C), Y)
$$

SUBROUTINE NAMES:
DIIMCY or DAIIMC
PURPOSE: These subroutines are virtually identical to DIICYL or DAllCY except that the interpolated answer is multiplied by the floating point Z value prior to being returned as Y.

RESTRICTIONS: Call on subroutines DIDEGI and DIDIDA respectively.
CALLING SEQUENCE:

$$
\begin{aligned}
& \text { DIIMCY(PR,X,A(IC) }, \mathrm{Z}, \mathrm{Y}) \\
& \text { or } \operatorname{DALIMC(PR,X,AX}(I C), A Y(I C), Z, Y)
\end{aligned}
$$

SUBROUTINE NAMES:

D12MCY or DA12MC

PURPOSE: These subroutines are virtually identical to DIIMCY and DAIIMC except that parabclic interpolation is performed.

RESTRICTIONS: Calls on subroutines LAGRAN and LGRNDA respectively.
CALLING SEQUENCE:

$$
\begin{gathered}
\quad \mathrm{D} 12 \mathrm{MCY}(\mathrm{PR}, \mathrm{X}, \mathrm{~A}(\mathrm{IC}), \mathrm{Z}, \mathrm{Y}) \\
\text { or } \mathrm{DA} 12 \mathrm{MC}(\mathrm{PR}, \mathrm{X}, \mathrm{AX}(\mathrm{IC}), \mathrm{AY}(\mathrm{IC}), \mathrm{Z}, \mathrm{Y})
\end{gathered}
$$

SUBROUTINE, NAMES: CVQ1HT or CVQ1WM

PURPOSE:

These subroutines perform two single variable linear interpolations. The interpolation arrays mast have the same independent variable X and dependent variables of lets say $R(X)$ and $S(X)$. Additional arguments of Y, Z and T complete the data values. The post interpolation calculations ars respectively:

$$
\begin{aligned}
Y & =S(X) *(R(X)-T) \\
\text { or } Y & =2 K S(X)(R(X)-T)
\end{aligned}
$$

RESTRICTIONS:
Interpolation arrays must be of the doublet type and have a common independent variable. All values must be floating point numbers.

CALLING SEQUENCE:

$$
\begin{gathered}
\text { CVQIHT }(X, A R(I C), A S(I C), T, Y) \\
\text { or } \operatorname{CVQLim}(X, A R(I C), A S(I C), T, Z, Y)
\end{gathered}
$$

SUBROUTTNE NAMES:
GSIDPE

PURPOSE:

This subroutine will generate a slope array so that point slope interplation subroutines can be used instead of standard linear interpclation subroutines. The user must address two singlet type arrays and a singlet slope array will be produced.

RESTRICTIONS:

The X independent variable array must be in ascending order. All arrays must be of equal length and contain floating point numbers.

CALLING SERUENCE:

$$
\operatorname{GSL} \not \varnothing \mathrm{PE}(\mathrm{AX}(\mathrm{IC}), \mathrm{AY}(\mathrm{IC}), \mathrm{AS}(\mathrm{IC}))
$$

SUBROUTINE NAMES: PSINTR or PSNTWM

PURPOSE:

These subroutines perform linear interpolation and require arrays of the \mathbf{Y} points and slepes which correspond to the independent variable X array. All values must be floating point numbers. PSNTWM multiplies the interpolated answer by Z prior to returning it as Y.

RESTRICTIONS:
The independent X and dependent Y and slope arrays mast be of equal length.
CALLING SEQUENCE:

$$
\begin{gathered}
\text { PSINTR(X,AX(IC) }, \mathrm{AY}(\mathrm{IC}), \mathrm{AS}(\mathrm{IC}), \mathrm{Y}) \\
\text { or } \operatorname{PSNTWM}(X, A X(\mathrm{IC}), \mathrm{AY}(\mathrm{IC}), \mathrm{AS}(\mathrm{IC}), \mathrm{Z}, \mathrm{Y})
\end{gathered}
$$

CINDA-3G

BIVARTATE ARRAY FORMAT
 $Z=f(X, Y)$

Eivariatt arrays must be rectangular, full and input in the following row oider:

where N is the integer number of X variables, All other values must be flowing point numbers, and the X and Y values mast be in ascending order.

QJPROUT NNE NAMES: BVSPSA O: BVSPDA
PURPOSE: These subroutines use an input Y argument to address a bivariate array and pull off a singlet array of Z's corresponding to the X's or pull off a doublet array of X, Z values, respectively. The integer count for the constructed arrays must be exactly N or $2^{n} N$ respectively. To use the singlet array for an interpolation call the X array can be reached by addressing the N in the bivariate array.

RESTRICTIONS: As stated above, and all values must be floating point.
CALIING SEQUENCE: \quad BVSPSA (Y, $\mathrm{BA}(\mathrm{IC}), \mathrm{AZ}(\mathrm{IC}))$

$$
\text { BVSPDA }(Y, B A(I C), A X Z(I C))
$$

SUBPOUTTNE NAMES:

BVTRN1 or 3VTRN2

PURPOSE: These subroutines construct a bivariate array of Y 's versus X and Z from an input bivariate array of Z 's versus X and Y. BVTRN1 snould be used when the Z values increase with increasing Y values and BVTRN2 when the 2 values decrease with increasing Y values.

RFSTRICTTONS: The user mast appropriately place the X and Z values and spaces for Y 's in the array to be constructed. These subroutines will fill in the Y spaces. The new array can differ in size from the old. Subroutine DIDEGI is called and its linear extrapolation feature applies.

CALIING SEQUENCE:

$$
\begin{array}{r}
\operatorname{BVTRN1}(\mathrm{BA} \varnothing(\mathrm{IC}), \operatorname{BAN}(\mathrm{IC})) \\
\text { or } \operatorname{BVTRN2(BA\varnothing (IC),BAN(IC))})
\end{array}
$$

SUBROUTINE NAMES: D2DEG1 or D2DEG2

PURPOSE: These subroutines perform bivariate linear and parabolic interpolation respectively. The arrays must be formated as shown for Bivariate Array Format.

RESTRICTIONS: For D2DEGI , $\mathrm{N} \geq 2, \mathrm{M} \geq 2$ See page 6.2.7 for D2DEG2, $N \geq 3, M \geq 3\}$ array format

CALLING SEQUENCE: \quad D2DEGI ($\mathrm{X}, \mathrm{Y}, \mathrm{BA}(\mathrm{IC}), \mathrm{Z})$
or D2DEG2 (X,Y,BA(IC), Z)

SUBROUTTNE NAMES:
D2D1/MM or D2D2WM
PURPOSE: These subroutines perform bivariate linear cr parabolic interpolation by calling on D2DEG1 or D2DEG2 respectively. The interpolated answer is multiplied by the W value prior to being returned as Z.

RESTRICTIONS: Same as D2DEG1 or D2DEG2 and W must be a floating point value.

CALUTHG SEOUENCE:

$$
\begin{array}{r}
\mathrm{D} 2 \mathrm{D} 1 \mathrm{WM}(\mathrm{X}, \mathrm{Y}, \mathrm{BA}(\mathrm{IC}), \mathrm{W}, \mathrm{Z}) \\
\text { or } \mathrm{D} 2 \mathrm{D} 2 \mathrm{WM}(\mathrm{X}, \mathrm{Y}, \mathrm{BA}(\mathrm{IC}), \mathrm{W}, \mathrm{Z})
\end{array}
$$

SUBROUTINE NAMES:
D2MXD1 or D2MXD2
PURPOSE: These subroutines are virtually identical to D2DEG1 and D2DEG2 except that the arithmetic mean of two X values is used as the X independent variable for interpolation.

RESTRICTIONS: Same as D2DEG1 or D2DEG2.
CALLING SEQUENCE:

```
    D21XD1(X1, X2,Y,BA(IC),Z)
    or D2MXD2(X1,X2,Y,BA(IC),Z)
```

SUBROUTINE NAMES:

D2MX1M or D2MX2M

PURPOSE: These subroutines are virtually identical to D2D1WM and D2D2WM except that the arithmetic mean of two X values is used as the X independent variable for interpolation.

RESTRICTIONS: Same as D2D1WM and D2D2WM.
CALLIMG SEQUENCE:

```
    D2MX1M(X1,X2,Y,BA(IC),W,Z)
    or \(\operatorname{D2NX2M}(\mathrm{X} 1, \mathrm{X} 2, Y, \mathrm{BA}(\mathrm{IC}), \mathrm{W}, \mathrm{Z})\)
```

TRTVARIATE ARRAY FORMAT
$T=f(X, Y, Z)$
Trivariate arrays may be thought of as two or more bivariate arrays, each bivariate array a function of a third independent variable Z. Trivariate arriys must be input in row order and be constructed as follows:

Thr trivariate array miy consist of as many bivariate "sheets" $4 s$ desired. The rumber of X and Y values in each sheet must be specified as integers (MT-MY). The "sheets" must be rectangular and full but need not be identicil in size.

UUBROUTINE NAMES:
 D3DEGI or D3DIWM

FTRPOEE:

These subroutines perform trivariate linear intepolation. The interpolation arry must be constructed as shown for Trivariate Array Format. Subroutine WDPGl is called on which calls on DIDFGl. Hence, the linear extrapolation feature of these routines applies. Subroutine D3DlWM multiplies the interpolated answer $\mathrm{b} V \mathrm{~F}$ prior to returning it as T .

RESTRTCTIONS:

Ser Trivariate Array Format. F must be a floating point value.
GLLING SEQUENCE:

$$
\begin{aligned}
& \operatorname{D3DEG1}(X, Y, Z, T A(I C), T) \\
& D 3 D 1 W M(X, Y, Z, T A(I C), F, T)
\end{aligned}
$$

SUBROUTINE NAMES:
VARCSM or VARCCM or VARCI or VARC2
PURPOSE: These are linear interpolation subroutines which are set up as
Variables 1 calls by the preprocessor when processing the CGS and CGD mnemonic codes in the nodal data block. VARCSM is utilized for the CGS code. VARCCM is utilized for the CGD code when t: a array arguments appear. VARCI and VARC2 are used for the CGD code when either the first or second respective array arguments are input as a constant. The following memonic codes in the nodal block

$$
\begin{array}{ll}
\text { Col } 8 & \text { CGI 1, } 1 ., A 1,10.2 \\
& \text { CGL } 20 ., A 1,10.2, A 2,1.6 \\
& \text { CGD } 3,80 ., 1.4,5.1, A 2,1.6 \\
& \text { CGD } 4,80 ., A 1,5.1,6.3,8.7
\end{array}
$$

would cause the construction in Variables 1 of

$$
\begin{array}{ll}
\text { Col } 12 & \text { VARCSM (T1, C1, A1, 10.2) } \\
& \text { VARCCM (T2, C2, A1, 10.2, A2, 1.6) } \\
& \text { VARCJ. (T3, C3, } 1.4,5.1, \mathrm{~A} 2,1.6) \\
& \text { VARC2 (T4, C4, A1, } 5.1,6.3,8.7)
\end{array}
$$

The second call causes the sum of two interpolations with multiplications to be used as the C2 value. The later two calls only perform one interpolation, but use the sum of the two products as the C value.

RESTRICTIONS: The array arguments must address the integer count.
CALLING SEQUENCE:

```
\(\operatorname{VARCSM}(\mathrm{T}, \mathrm{C}, \mathrm{A}(\mathrm{IC}), \mathrm{F})\)
or \(\operatorname{VARCCM}(T, C, A 1(I C), F 1, A 2(I C), F 2)\)
or VARCl (T, C, X, F1, A2(IC), F2)
or VARC2 (T, C, A1 (IC), F1, X, F2)
```

SUBROUTINE NAMES:
VARGSM or VARGCM or VARGI or VARG2
PURPOSE: These are linear interpolation subroutines which are set up as Variables 1 calls by the preprocessor when processing the CGS and CGD mnemonic codes in the conductor data block. They are similar to the preceeding four calls for the nodal data block except that the conductor argument is first followed by two temperature arguments. VARGSM is used for the CGS code. If the F value is positive the mean of the two addressed temperatures is used for interpolation. If it is negative only Tl is used for interpolation and the absolute value of F is used as a multiplier. The VARGCM, VARGI and VARG2 perform the one or two interpolations required, multiply by the F values to obtain $G 1$ and $G 2$ components and then calculate G as
$\mathrm{G}=1.0 /(1.0 / \mathrm{Gl}+1.0 / \mathrm{G} 2)$
FESTRTCTIONS: The array arguments must address the integer count.
CALLING SEQUENCE:

$\operatorname{VARGSM}(\mathrm{G}, \mathrm{Tl}, \mathrm{Tz}, \mathrm{A}(\mathrm{IC}), \mathrm{F})$

or VARGCM (G, T1, T2, A1(IC), F1, A2(IC), F2)
or VARG1 ($G, T 1, T 2, X, F 1, A 2(I C), F 2$)
or VAPG2 ($G, T 1, T 2, \operatorname{Al}(I C), F 1, X, F 2$)

Arithmetic Subroutines

Name	Page
FL \varnothing AT, FIX, INTRFC, SHFTV , SHFTVR, FLIP	6.3 .1
SETPLS, ARYPLS, SETM	6.3 .2
ADD, ADDFIX, ADDARY, ARYADD	6.3 .3
SUB, SUBFIX, SUBARY, ARYSUB	6.3 .4
MLTPLY , MPYFIX , MPYARY, ARYMPY	6.3 .5
DIVIDE, DIVFIX, DIVARY, ARYDIV	6.3 .6
GENARY, ELDARY, BRKARY, BKARAD	6.3 .7
STFSEP, SCALE, STFSEQ,STFSQS	6.3 .8
SUMARY, MA XDAR, MXDRAL	6.3 .9
ARYINV, ARINDV, ADDIN , ADARIN	6.3.10
STXARY,ARYSTD, SCLDEP,SCLIND,SLDAFY, SLDARD	6.3.11
SPLIT, JøIN,SPREAD	6.3.12
QMETER,RDTVQS, QMTRI, QFøRCE, QINTEG, QINTGI	6.3.13
CINSIN,SINARY, CINC \varnothing S, $¢ \varnothing$ SARY, CINTAN, TANARY	6.3.14
ARCSIN, ASNARY, ARCCDS , ACSARY, ARCTAN, ATNARY	6.3.15
EXPNTL,ARYEXP, EXPARY, L¢GT,IDGTAR, L¢GE, L¢GEAR	6.3 .16
	6.3.17
CMPXMP, CMPYI, CMPXTV,CDIVI	6.3.18
NEWTRT, NEWR Ti+, PLYNML, PLYARY	6.3.19
SMPINT, TRP2D: TRP2DA	6.3.20
PRESS,SPRESS,EFFG, EFFEMS	6.3.21

SUBRCUTINE NAMES: FLØAT or FIX or INTRFC

PURPOSE:

Subroutine FL \varnothing AT will convert an integer to a floating point number. Subroutine FIX will convert a floating point number to an integer. Subroutine INTRFC will fracture a floating point number to pield the largest integer value possible and the remainder or frastioral portion as a floating point number. Their respective soerations are:

$$
\begin{aligned}
X & =N \\
\text { or } N & =X \\
\text { or } N & =X \\
Y & =N \\
F & =X-Y
\end{aligned}
$$

RESTRICTIONS:
X and F arguments must address floating point values and the N argument address an integer.

CALLING SEQUENCE:
$\operatorname{FLDAT}(N, X)$
or $\operatorname{FIX}(X, N)$
or $\operatorname{INTRFC}(X, N, F)$

SUBROUTINE NARES:
SHFTV or SHFTVR or FLIP

PURPOSE:

Subroutine SHFTV will shift a sequence of data from one array to another. Subroutine SHFTVR will shift a sequence of data from one array and place it in another array in reverse order. Subroutine FLIP will reverse an array in its own array location. Their respective operations are:

$$
\begin{aligned}
A(i)=B(i) & , i=1, N \\
\text { or } A(N-i+1)=B(i) & , i=1, N \\
\text { or } A(i) \text { new }=A(N-i+2) \text { old }, & i=2, N+1
\end{aligned}
$$

RESTRICTIONS:

The data values to be shifted or reversed in order may be anything. The N must be an integer.

CALLING SEQUENCE:

$$
\begin{aligned}
& \operatorname{SHFTV}(\mathrm{N}, \mathrm{~B}(\mathrm{DV}), \mathrm{A}(\mathrm{DV})) \\
& \text { or } \operatorname{SHFTVR(N,B(DV),A(DV))} \\
& \underset{\operatorname{FLIP}(A(I C))}{ }
\end{aligned}
$$

SUBROUTTNE NAMES: SETPLS or ARYPLS

PURPOSE:

SETPLS will set the sign positive for a variable number of arguments while ARYPLS will set the sign positive for every diata value in a specified length array.

RESTRICTIONS:
The values addressed may be either integers or floating point numbers. The number (N) of data values in the array mast be specified as an integer.

CALLING SEQUENCE:
$\operatorname{SETPIS}(A, B, C \ldots)$
or $\operatorname{AFYPLS}(N, A(D V))$
where N may be a literial integer or the address of a location containing an integer and $A(D V)$ addresses the first data value in the array.

SUBROUTINE NAMES:
 SETYAS O: ARYMNS

PURPOSE:
SETHNS will set the sige negative for a variable number of arguments while ARYMNS will set the sign negative for every data value in a specified length array.

BESTRICTIONO:

The values addressed may be either intigers or floating point numbers. The number (N) of data values in the array must be specified as an integer.

CALLING SEQUENCE:

$$
\begin{aligned}
& \operatorname{SETMNS}(A, B, C, \ldots) \\
& \text { or } \operatorname{ARYMNS}(N, A(D V))
\end{aligned}
$$

where N may be a literial integer or the address of a location containing an interger and $A(D V)$ addresses the first data value in the array.

SUBROUT INE NAMES:
 ADD or ADDFIX

PURPOSE:

To sum a variable number of floating point or integer numbers respectively.

$$
S=\Sigma X_{i} \quad, \quad i=1,2,3, \ldots, N \quad, \quad N \geq 2
$$

RESTRICTIONS:

Subroutine ADD is for floating point numbers while subroutine ADDFIX is for integers.

CALLING. EQUENCE:

$$
\begin{gathered}
\operatorname{ADD}(X 1, X 2, X 3, \ldots, X N, S) \\
\text { or } \operatorname{ADDFIX}(X 1, X 2, X 3 \ldots . X N, S)
\end{gathered}
$$

SUBROUTTNE NAMES: ADDARY or ARYADD

PURPOSE:

Subroutine ADDARY will add the corresponding elements of two specified length arrays to form a third array. Subroutine AFYADD will add a constant value to everry element in an array to form a new array. Their respective operations are:

$$
\begin{array}{rlll}
A i & =B i+C i & , & i=1, N \\
\text { or } A i & =B i+C & , & i=1, N
\end{array}
$$

RESTRICTIONS:
All data values to be operated on must be floating point numbers. The array length N must be an integer.

CALITNG SEQUENCE:

$$
\begin{aligned}
& \operatorname{ADDARY}(\mathrm{N}, \mathrm{~B}(\mathrm{DV}), \mathrm{C}(\mathrm{DV}), \mathrm{A}(\mathrm{DV})) \\
& \text { cr } \operatorname{ARYADD}(\mathrm{N}, \mathrm{~B}(\mathrm{DV}), \mathrm{C}, \mathrm{~A}(\mathrm{DV}))
\end{aligned}
$$

The answer array may be overlayed into one of the input array areas.

SUBROUTINE NAMES:
 SUB or SUBFIX

PURFOSE:
To subtract a variable number of floating point or integer numbers respectively.

$$
R=Y-\Sigma X_{i}, i=1,2,3, \ldots, N, N \geq 1
$$

RESTRICTIONS:

Subroutine SUB is for floating point numbers while subroutine SUBFIX is for integers.

CALITING SEQUENCE:

$$
\begin{aligned}
& \operatorname{SUB}(Y, X 1, X 2, X 3, \ldots, X N, R) \\
\text { or } & \operatorname{SUBF} I X(Y, X 1, X 2, X 3, \ldots, X N, R)
\end{aligned}
$$

SUBROUTINE NAMES: SUBARY or ARYSUB

PURPOSE:

Subroutine SUBARY will subtract the corresponding elements of one array from another to form a third array. Subroutine AFYSUB will subtract a constant value from every element in an array to form a new array. Their respective operations are:

$$
\begin{array}{rlrl}
\mathrm{Ai} & =\mathrm{Bi}-\mathrm{Ci} & , \quad, & i=1, N \\
\text { or } \mathrm{Ai} & =\mathrm{Bi}-\mathrm{C} & , \quad \mathrm{i}=1, \mathrm{~N}
\end{array}
$$

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The array length N must be an integer.

CALLING SEQUENCE:

$$
\begin{aligned}
& \operatorname{SUBAFY}(N, B(D V), C(D V), A(D V)) \\
& \text { or } A R Y S U B(N, B(D V), C, A(D V))
\end{aligned}
$$

The answer array may be overlayed into one of the input array areas.

SUBROUTINE NAMES:

MLTPIY or MPYFIX

PURPOSE:

To multiply a variable number of floating point or integer numbers respectively.

$$
P=X 1 * X 2 * X 3 * \ldots K X N \quad, \quad N \geq 2
$$

RESTRICTIONS:
Subroutine MLTPIY is for floating point numbers while subroutine MPYFIX is for integers.

CALLING SEQUENCE:

$$
\begin{aligned}
& \operatorname{ILTPLY}(X 1, X 2, X 3, \ldots, X N, P) \\
& \text { or } \quad \operatorname{MVFIX}(X 1, X 2, X 3, \ldots, X N, P)
\end{aligned}
$$

SUBROUTINE NAMES:
MPYARY or ARYMPY

PURPOSE:

Subroutine MPYARY will multiply the corresponding elements of two arrays to form a third. Subroutine AFMMPY will multiply a constant value times each element of an array to form a new array. Their respective operations are:

$$
\begin{aligned}
\mathrm{A} i & =\mathrm{Bi} * \mathrm{Ci}, i \\
\text { or } \mathrm{A} i & =\mathrm{Bi} * \mathrm{C}, \mathrm{~N} \\
, i & =I, \mathrm{~N}
\end{aligned}
$$

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The array length N must be an integer.

CALLING SEQUENCE:

$$
\begin{aligned}
& \text { MPYARY(N,B(DV),C(DV),A(DV))} \\
& \text { or } A R Y M P Y(N, B(D V), C, A(D V))
\end{aligned}
$$

The answer array may be overlayed into one of the input array areas.

SUBROUTINE NAMES:
DIVIDE or DIVFIX

PURPOSE:

To perform a division of floating point or integer numbers respectively.

$$
\mathrm{Q}=\mathrm{Y} / \Sigma \mathrm{Xi}_{\mathrm{i}}, \mathrm{i}=1,2,3, \ldots, \mathrm{~N}, \mathrm{~N} \geq 1
$$

RESTRICTIONS:
Subroutine DIVIDE is for floating point numbers while DIVFIX is for integers.

CALLING SEQUENCE:

$$
\begin{aligned}
& \operatorname{DIVIDE}(\mathrm{Y}, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{XN}, \mathrm{Q}) \\
\text { or } & \operatorname{DIVFIY}(\mathrm{Y}, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{XN}, \mathrm{Q})
\end{aligned}
$$

SUBROUTINE NAMES:
DIVARY or ARYDIV

PURPOSE:

Subroutine DIVARY will divide the elements of one array into the corresponding elements of another array to produce a third array. Subroutine ARYDIV will divide each element of an array by a constant value to produce a new array. Their respective operations are:

$$
\begin{aligned}
\mathrm{Ai} & =\mathrm{Bi} / \mathrm{Ci}, \\
\text { or } \mathrm{Ai} & =\mathrm{Bi} / \mathrm{C}, \mathrm{I}, \mathrm{~N} \\
\mathrm{i} & =1, \mathrm{~N}
\end{aligned}
$$

RESTRICTIONS:
All data values to be operated on must be floating point numbers. The array length N must be an integer.

CALITNG BEQUENCE:

$$
\begin{aligned}
& \text { DIVARY(N,B(DV) ,C(DV),A(DV)) } \\
& \text { or ARYDIV(N,B(DV),C,A(DV)) }
\end{aligned}
$$

The answer array may be overlayed into one of the input array areas.
chpyslea

PURPOSE:

This subroutine will generate an array of equally incremented ascending values. The user must supply the minimum value, maximum value, number of values in the array to be generated and the space for the generated array.

RESTRICTIONS:
All numbers must be floating point.
CALLTNG SEQUENCE: GENARY(B(DV),A(DV))
where $B(1)=$ minimum value
$B(2)=$ maximum value
$B(3)=$ length of array to he generated (floating point)

SUBROUTINE NAME:
BIDARY

PURPOSE:

This subroutine will build an array from a variable number of arguments in the order listed. The operation performed is:

$$
A i=X_{i} \quad, \quad i=1, N
$$

RESTRICTIONS:
Data may be of any form. The subroutine obtains the integer array length N by counting the arguments.

CALLTNG SEQUENGE: \quad BLDARY $(A(D V), X 1, X 2, X 3, \ldots, X N)$

SUBROUTINE NAME: BRKARY or BKARAD

PURPOSE:

These subroutines will distribute values from within an array to a variable number of arguments in the order listed. The first places the value into the location while the second adds it to whats in the location. Respective operations are:

$$
\begin{array}{lll}
X i=A i & , & i=1, N \\
\text { or } X i=X i+A i & , & i=1, N
\end{array}
$$

RESTRICTIONS:
Floating point numbers must be used for BKARAD. The integer array length N is obtained by the routines by counting the number of arguments.

CALIING SEQUENCE:

SUBROUTINE NAMES:
STFSEP or SCALE

PURPOSE:

Subroutine STFSEP will place a constant value into a variable number of locations. Subroutine SCALE will utilize a constant value to multiply a variable numicer of arguments, each having a location for the product. The respective operations are:

$$
\begin{aligned}
\mathrm{Xi} & =Y & , & i=1,2,3, \ldots, N \\
\text { or } \mathrm{Xi} & =\mathrm{Y} \because \mathrm{Zi} & , & i=1,2,3, \ldots, \mathrm{~N}
\end{aligned}
$$

RESTRICTIONS:

STFSEP may be used to move any desired value but SCALE can only be used for floating point numbers.

CALLING SEQUENCE:

$$
\begin{aligned}
& \operatorname{STFSEP}(\mathrm{Y}, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{XN}) \\
& \text { or } \operatorname{SCALE}(\mathrm{Y}, \mathrm{X} 1, \mathrm{Z} 1, \mathrm{X} 2, \mathrm{Z} 2, \ldots, \mathrm{XN}, \mathrm{ZN})
\end{aligned}
$$

SUBROUTTNE NAMES:

STFSEQ or STFSQS

PURPOSE:

Both subroutines will stuff a constant data value into a specified length array or group of sequential locations. STFSEQ expects the constant data value to be in the first array location while STFSQS requires it to be supplied as an additional argument. The respective operations performed are:

$$
\begin{aligned}
A i & =A l, \\
\text { or } A i & =B,
\end{aligned} \quad \begin{aligned}
& i
\end{aligned}
$$

RESTRICTIONS:

N must be an integer but the constant data value may be integer, floating point or alpha-numeric.

CALLING SEQUENCE:

$$
\begin{gathered}
\operatorname{STFSEQ}(A(D V), N) \\
\text { or } \operatorname{STFSQS}(B, N, A(D V))
\end{gathered}
$$

SUBROUTINE NAME:

SUMAFY
PURPOSE:
To sum an array of floating point values:

$$
S=\Sigma \mathrm{Ai}, \quad i=1, N
$$

RESTRICTIONS:

The values to be summed must be floating point numbers and the array length N must be an integer.

CALIING SEQUENCE:

$$
\text { SUMARY }(N, A(D V), S)
$$

SUBROUTINE NȦMES:
MAXDAR or MXDRAL

PURPOSE:

These subroutines will obtain the absolute maximim difference between corresponding elements of two arrays of equal length N. The array values must be floating point numbers. The operation performed is

$$
D=|A i-B i|_{\max } \quad, \quad i=1, N
$$

Subroutine MXDRAL also locates the position P between 1 and N where the maximum occurs.

RESTRICTIONE:

The N argument must be an integer. The D and P arguments are retumed as floating point numbers.

CALLING SEQUENCE:

$$
\begin{gathered}
\operatorname{MAXDAR}(N, A(D V), B(D V), D) \\
\text { or } \operatorname{MXDRAL}(N, A(D V), B(D V), D, P)
\end{gathered}
$$

SUBROUTINE NAMES:
 ARYINV or ARINDV

PURPOSE:

Subroutine ARYINT will invert each element of an array in its own location. Subroutine ARINDV will divide each element of an array into a constant value to form a new array. Their respective operations are:

$$
\begin{aligned}
\mathrm{Ai} & =1.0 / \mathrm{Ai}, & i=1, N \\
\text { or } \mathrm{Ai} & =\mathrm{B} / \mathrm{Ci}, & i=1, \mathrm{~N}
\end{aligned}
$$

RESTRICTIONS:
All data values must be floating point numbers. The array length N must be an integer.

CALLING SEQUENCE:

$$
\begin{aligned}
& \text { ARYINV (N,A(DV)) } \\
& \text { or ARINDV (N,C(DV),B,A(DV)) }
\end{aligned}
$$

the ARINDV answer array may be overlayed into the input array area.

SUBROUTINE NAMES:
ADDINV or ADARIN

PURPOSE:

Subroutine ADDINV will calculate one over the sun of the inverses of a variable number of arguments. Subroutine ADARDN will calculate one over the sum of inverses of an array of values. These subrcutines are useful for calculating the effective conductance of series conduct.rs. Their respective operations are:

$$
\begin{aligned}
Y & =1.0 /\left(1 / \mathrm{X}_{1}+1 . / \mathrm{X} 2+\ldots+1 . / \mathrm{XN}\right) \quad, \mathrm{N} \geq 2 \\
\text { or } Y & =1.0 / \Sigma\left(1 . / \mathrm{X}_{i}\right) \quad, \quad i=1, N
\end{aligned}
$$

RESTRTCTIONS:

All data values must be floating point numbers. The array length N must be an integer.

CALLING SEQUENCE:

$$
\begin{aligned}
& \operatorname{ADDINV}(\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots \mathrm{XN}, \mathrm{Y}) \\
& \text { or } \operatorname{ADARIN}(\mathrm{N}, \mathrm{X}(\mathrm{DV}), \mathrm{Y})
\end{aligned}
$$

SUBROUTINE NAMES: STGARY or ARYSTD

PURPOSE:

These subroutines will place a value into or take a value out of a specific array location respectively. Their respective operations are:

$$
\begin{array}{rlll}
A i=X & , & i=N & , \\
\text { or } X=A i & , & i=N & ,
\end{array}
$$

RESTRICTIONS:
The values may be anything but N must be an integer.

> CALLING SEQUEIVCE:

$$
\begin{aligned}
& \text { STØARY }(N, X, A(D V)) \\
& \text { or } \quad A R Y S T \phi(N, X, A(D V))
\end{aligned}
$$

SUBROUAINE NAMES: SCLDEP or SCLIND

PURPOSE:

These subroutines will multiply the dependent or independent variables of a doublet tjpe interpolation array respectiveiy. Their respective operations are:

$$
\begin{array}{rll}
\mathrm{Ai}=X^{*} \mathrm{Ai} & , & i=3,5,7, \ldots, \mathrm{~N}+1 \\
\text { or } \mathrm{Ai}=X^{*} A i & , & i=2,4,6, \ldots, \mathrm{~N}
\end{array}
$$

RESTRICTIONS:

All values must te floating point. The arrays must contain the length integer count as the first value which must be even.

$$
\text { CALIING SEQUENCE: } \quad \text { or } \begin{array}{r}
\operatorname{SCLDEP}(A(I C), X) \\
\operatorname{SCLIND}(A(I C), X)
\end{array}
$$

SUBROUTINE NAMES: SLDARY or SLDARD

PURPOSE:

These subroutines are useful for updating fixed length interpolation arrays during a transient analysis. The array data values are moved back one or two positions, the first one or two values discarded and the last one or two valus updated respectively. The "sliding array" thus maintained can then be used with standard interpolation subroutines to simulate transport delay phenomina. Their respective operations are:

$A i=A i+1$,	$i=2, N$
and $A i=X$		$i=N+1$
or $A i=A i+2$	$i=2, N-1$	
and $A i=X$ and $A i+1=\dot{Y}$,	$i=N$	

RESTRICTIONS:

The addressed arrays must have the array integer count N as the first value. For SLDARD, N must be even.
CALILING SEQUENCE:

SUBROUTINE NAMES:
SPLIT or J IDIN

PURPOSE:

These subroutines separate a doublet array into two singlet arrays or combine to singlet arrays into a doublet array respectively. Their respective operations are:

$$
\begin{array}{lll}
\mathrm{Bi}=\mathrm{A}_{2} i-1 & , & i=1, N \\
\mathrm{Ci}=\mathrm{A}_{2} i & , & i=1, N \\
A_{2 i-1}=\mathrm{Bi} & , & i=1, N \\
\mathrm{~A}_{2} \dot{I}=\mathrm{Ci} & & \\
i=1, N
\end{array}
$$

RESTRICTIONS:
The arrays may contain any values but N must be an integer. N is the length of the B and C arrays and the A array must be of length $2 N$.
CALITNG SEQUENCE:

$$
\begin{aligned}
& \quad \operatorname{SPLIT}(N, A(D V), B(D V), C(D V)) \\
& \text { or } \quad J \not \subset I N(N, B(D V), C(D V), A(D V))
\end{aligned}
$$

SUBROUTINE NAME:
SPREAD

PURPOSE:

This subroutine applies interpolation subroutine DlDlDA to two singlet arrays to obtain an array of dependent variables versus an array of independent variables. It is extremely useful for obtaining singlet arrays of various dependent variables with a corresponding relationship to one singlet.independent variable array. The dependent variable arrays thus constructed can then be operated on by array manipulation subroutines in order to form composite or complex functions. Doublet arrays can first be separated with subroutine SPLIT and later reformed with subroutine JøIN.

RESTRICTIONS:

All data values must be floating point except N which must be the integer length of the array to be constructed. The arrays fed into DIDIDA for interpolation must start with the integer count. X is for independent and Y is for dependent. I is for input and \emptyset for output.

CALLING SEQUENCE:

$$
\operatorname{SPREAD}(N, X(I C), Y(I C), X I(D V), Y \phi(D V))
$$

chamsin

SUBROUTINE NAMES: QMEIEK or RDTNQS or QMTRI or QFØRCE

PURPOSE:

These subroutines are generally used for calculating flow rates. Their respective operations are:

$$
\begin{aligned}
A & =B^{*}(C-D) \\
\text { or } A & =B^{*}\left((C+460 .)^{4}-(D+460 .)^{4}\right) \\
\text { or } A i & =B i^{*}(C i-C i+1) \quad i=1, N \\
\text { or } A i & =B i^{*}(C i-D i), i=1, N
\end{aligned}
$$

RESTRICTIONS:
All values must be floating point numbers except the array length N which must be an integer.

ChTIING SEQUENCE:

$$
\begin{aligned}
& \text { QMETER(C,D,B,A) } \\
& \text { or } \operatorname{KDTNQS(D,C,B,A)} \\
& \text { or } \operatorname{QMTRIN}, C(D V), E(D V), A(D V)) \\
& \text { or } \operatorname{QF\phi REE}(N, C(D V), D(D V), B(D V), A(D V))
\end{aligned}
$$

SUBROUTINE NAMES:
QINTEG or QINTGI

PURPOSE:

These subroutines perforn a simple integration. They are reful for obtai the integrals of flow rates calculated by $\mathbb{Q} E T E R$, RDTNQS, $\mathbb{Q M T R I}$ or $Q[\not \subset \mathrm{RCE}$ Their respective operations are:

$$
\begin{aligned}
S & =S+Q^{*} D T \\
\text { or } S i & =S i+Q_{i} * D T \quad, i=1, N
\end{aligned}
$$

All values must be floating point numbers except N which must be an integer. Control constant DTMEU should be used for the step size when doing an intigration with respect to time. These subroutines should be called in Variables 2.

CALLING SERUENCE:

$$
\begin{aligned}
& \quad \operatorname{QNTEG}(Q, D T, S) \\
& \text { or } Q \operatorname{NTGI}(N, Q(D V), D T, S(D V))
\end{aligned}
$$

SUBROUTINE NAMES: CINSIN or SINARY

PURPOSE:

These subroutines obtain the sine function of an angle or aray of angles.
Their respective operations are

$$
\begin{aligned}
A & =\operatorname{sine}(B) \\
\text { or } A i & =\operatorname{sine}(B i) \quad, \quad i=2, N
\end{aligned}
$$

RESTRICTIONS:

All angles must be in radians. All values must be floating point numbers except N which must be an integer.
CALLING SEQUENCE:

$$
\begin{array}{ll}
& \operatorname{CINSIN}(B, A) \\
\text { or } \quad & \operatorname{SINARY}(N, B(D V), A(D V))
\end{array}
$$

SUBROUTINE NAMES: CINCDS or CDSARY

PURPOSE:

These subroutines obtain the cosine function of an angle or array of angles. Their respective operetions are:

$$
\begin{aligned}
A & =\operatorname{cosine}(B) \\
\text { or } \quad A i & =\operatorname{cosine} \text { (Bi) } \quad, \quad i=1, N
\end{aligned}
$$

RESTRICTIONS:
All angles must be in radians. All values must be floating point numbers except the array length N which must be an integer.
CALLTNG SEQIFIMCE:

$$
\begin{aligned}
& \operatorname{CINC\phi S}(B, A) \\
& \text { or } \quad \operatorname{C\phi SARY}(N, B(D V), A(D V))
\end{aligned}
$$

SUBROUTINE NAMES:

CINTAN or TANARY

PURPOSE:

These subroutines obtain the tagent function of an angle or array of angles. Their respective operations are:

$$
\begin{aligned}
\mathrm{A} & =\text { tangent (B) } \\
\text { or } \quad \mathrm{Ai} & =\text { tangent }(\mathrm{Bi}) \quad, \quad i=1, \mathrm{~N}
\end{aligned}
$$

RESTRICTIONS:

All angles must be in radians. All values must be floating point numbers except the array length N which must be an integer.
$\begin{array}{ll}\text { CALLING SEQUENCE: } & \operatorname{CINTAN}(B, A) \\ & \text { or } \quad \operatorname{TANARY}(N, B(D V), A(D V))\end{array}$

SUBROUTINE NAMES: ARCSIN or ASNARY

PURPOSE:

These suoroutines obtain the angle corresponding to a sine function value or array of sine values. Their respective operations are:

$$
\begin{aligned}
A & =\operatorname{sine}^{-1}(B) \\
\text { or } \quad A i & =\operatorname{sine}^{-1}(B i) \quad, \quad i=1, N
\end{aligned}
$$

RESTRICTIONS:

ihe angles are returned in radians with the following limits, $-\pi / 2 \leq A \leq \pi / 2$. All values must be floating point except for the array length N which must be an integer.

CALLING SEQURNCE: \quad ARCSIN (B, A)

$$
\text { or } \quad \operatorname{ASNARY}(N, B(D N), A(D V))
$$

SUBROUTINE NAMES: ARCC/\$S or ACSARY

PURPOSE:

These subroutines obtain the angle corresponding to a cosine function value or array of cosine values. Their respective operations are:

$$
\begin{aligned}
A & =\operatorname{cosine}{ }^{-1}(B) \\
\text { or } \quad A i & =\operatorname{cosine}^{-1}(B i) \quad, \quad i=1, N
\end{aligned}
$$

RESTRICTIONS:

The angles are returned in radians with the following limits, $0 \leq \mathbb{A} \leq \pi$. All values must be floating point numbers except for the array length N which must be an integer.
CALL WG SEQUENCE: or $\begin{aligned} & \operatorname{ARCCOS}(B, A) \\ & \operatorname{ACSARY}(N, B(D V), A(D V))\end{aligned}$

SUBROUTINE NAMES: ARCTAN or ATNARY

PURPOSE:

Thses subroutines obtain the angle corresponding to a tangent function value of array of tangent values: Their respective operations are:

$$
\begin{aligned}
A & =\operatorname{tangent}^{-1}(B) \\
\text { or } \quad A i & =\operatorname{tangent}^{-1}(\mathrm{Bi}) \quad, \quad i=1, N
\end{aligned}
$$

RESTRICTIONS:

The angles are returned in radians with the following limits,
All values must be floating point numbers ixcept the array length \mathbb{N} which must be an integer.
CALLTNG SEQUENCE:

$$
\begin{aligned}
& \operatorname{ARCTAN}(B, A) \\
& \text { or } \quad \operatorname{ATNARY}(N, B(D V), A(D V))
\end{aligned}
$$

SUBROUTINE NAMES: EXPNTL or ARYEXP or EXPARY

PURPOSE:

These subroutines perform an exponential operation. Their respective operations are:

$$
\begin{array}{lll}
& A=B^{c} \\
\text { or } & A i=B i^{c} & ,
\end{array} \quad I=1, N
$$

RESTEICTIONS:

All values must be positive floating point numbers except N which must be an integer
GALLTNG SEQUENCE

$$
\begin{array}{ll}
& \text { EXPNTL }(C, B, A) \\
\text { or } & A R Y E X P(N, C, B(D V), A(D V)) \\
\text { or } & E X P A R Y(N, C(D V), B(D V), A(D V))
\end{array}
$$

SUBROUTINE NAMES: L\$GT or LXGTAR

PURPOSE:

These subroutines obtain the base $10 \log$ function of a number or array of numbers. Their respective operations are:

$$
\begin{aligned}
& \mathrm{A}=\log _{10}(\mathrm{~B}) \\
& \mathrm{Ai}=\log _{10}(\mathrm{Bi}) \quad, \quad \mathrm{i}=1, \mathrm{~N}
\end{aligned}
$$

RESTRICTIONS:

All values must be positive floating point numbers except N which must be an integer.
CALLING SEQUENCE:
I $\operatorname{GGT}(\mathrm{B}, \mathrm{A})$
or $\operatorname{LdGTAR}(N, B(D V), A(D V))$

SUBROUTINE NAMES:
 IDGE or IXGEAR

PURPOSE:

These subroutines obtain the base e log function of a number or array of numbers. Their respective operations are:

$$
\begin{aligned}
& A=\log _{\bullet}(B) \\
& \text { or } \quad A i=\log _{\bullet}(B i) \quad, \quad i=1, N
\end{aligned}
$$

RESTRICTIONS:

All values must be positive floating point numbers except N which must be an integer.
CAITING SERUENGR:
LfaE($B, A)$
or IfGEAR(N,B(DV),A(DV))

SUBROUTINE NAMES: SUR \quad or SQT

PURPOSE:
These subroutines obtain the square root of a number or array of numbers respectively. Their respective operations are:

$$
\begin{aligned}
A & =+\sqrt{B} \\
\text { or } \quad A i & =+\sqrt{B i} \quad, \quad i=1, N
\end{aligned}
$$

RESTRICTIONS:

The A and B values must be floating point numbers. The N must be an integer.

CALITIN SEQUENCE:

$$
\begin{aligned}
& \text { SQRめøT(B,A) } \\
& \text { or } \operatorname{SQRWTI}(N, B(D V), A(D V))
\end{aligned}
$$

SUBROUTINE NAMES: CMPXSR or CSQRI

PURPOSE:

These subroutines obtain the complex square root of a complez number or an array of complex numbers respectively. Their respective operations are:

$$
\begin{array}{rll}
A+i B & =\sqrt{C+i D} \\
\text { or } A j+i B j & =\sqrt{C j+i D j} & ,
\end{array} \quad j=\sqrt{-1}, \quad j=\sqrt{1, N}
$$

RESTRICTIONS:

All numbers must be floating point except N which must be an integer.
CALITNG SEQUENCE: \quad or $\quad \begin{aligned} & \operatorname{CMPXSR}(C, D, A, B) \\ & \operatorname{CSQRI}(N, C(D V), D(D V), A(D V), B(D V))\end{aligned}$

SUBROUTINE NAMES:
 CMPXMP or CMPYI

PURPOSE:

These subroutines will multiply two complex numbers or the corresponding elements of arrays of complex numbers. Their respective operations are:

$$
\begin{array}{rlrl}
A+i B & =(C+i D) \div(E+i E) & , & i=\sqrt{-1} \\
\text { or } A j+i B j & =(C j+i D j) *(E j+i F j), & j=1, N
\end{array}
$$

RESTRICTIONS:

All numbers must be floating point except for N which must be an integer.
CALLING SEQUENCE: CMPXMP (C,D,E,F,A,B)

$$
\text { or } \quad \operatorname{CMPYI}(N, C(D V), D(D V), E(D V), F(D V), A(D V), B(D V))
$$

SUBROUTINE NAMES:
CMPXDV or CDIVI
PURPOSE:
These subroutines will divide two complex numbers or the corresponding elements of arrays of complex numbers. Their respective operations are:

$$
\begin{aligned}
A+i B=(C+i D) /(E+i F) & , & i=\sqrt{-1} \\
\text { or } A j+i B j=(C j+i D j) /(E j+i F j) & , & j=1, N
\end{aligned}
$$

RESTRICTIONS:

All numbers must be floating point except for N which must be an integer.
CALLTING SEQUENCE:
CMPXDV (C,D,E,F,A,B)
or $\operatorname{CDIVI}(N, C(D V), D(D V), E(D V), F(D V), A(D V), B(D V))$

CHARELEA

SUBROUTINE NAMES:
 NEWTRT or NEWRT4

PURPOSE:

These subroutines utilize Newton's method to obtain one root of a cubic or quartic equation respectively. The root muat be in the neighborhood of the supplied initial guess and up to 100 iterations are performed in order to obtain an answer within the specified tolerance. If the tolerance is not met, an answer of 10^{38} is returned. The respective equations are:

$$
\begin{aligned}
& f(X)=A 1+A 2 * X+A 3^{*} * X^{2}+A 4 * X^{3}=0.0 \pm T \\
& \text { or } \quad g(X)=A 1+A 2 * X+A 3 * X^{2}+A 4^{*} * X^{3}+A 5 * X^{4}=0.0 \pm T
\end{aligned}
$$

where X starts as the initial guess RI and finishes as the final answer RF. T is the tolerance.

RESTRICTIONS:
All data values must be floating point numbers.
CALLTNG SEQUENCE: \quad or $\left.\quad \begin{array}{l}\text { NEWTRT (A(DV) }, \mathrm{T}, \mathrm{RI}, \mathrm{RF}) \\ \text { NEWRT4 }(\mathrm{A}(\mathrm{DV}), \mathrm{T}, \mathrm{RI}, \mathrm{RF})\end{array}\right\}$

SUBROUTINE NAMES:

PLYNM or PLYARY

PURPOSE:

These subroutines calculate Y from the following polynomial equation:

$$
Y=A I+A 2 * X+A 3 * X^{2}+A 4 * X^{3}+\ldots+A N * X^{N-1}
$$

The number of terms is variable but all the A ccefficients must be input no matter what their value.

RESTRICTIONS:
All values must be floating point numbers except the number of coefficients N which must be an integer.

CALITNG SLQUENCE: \quad PLYMML $(X, A 1, A 2, A 3, \ldots, A N, Y)$
or $\operatorname{PLYARY}(N, X, A(D V), Y)$

SUBROUTINE NAMES: SMPINT or TRPZD

PURPOSE:

These subroutines perform area integrations by Simpson's rule and the trapezoidal rule respectively. Simpson's rule requires that an odd number of points be supplied. If an even number of points is supplied, SMPINT will apply the trapezoidal rule to the last incremental area but Simpson's rule elsewhere. The respective operations are:

$$
\begin{aligned}
A & =D X *(Y 1+4 Y 2+2 Y 3+4 Y 4+\ldots+Y N) / 3 \\
\text { or } A & =D X *(Y I+2 Y 2+2 Y 3+2 Y 4+\ldots+Y N) / 2
\end{aligned}
$$

RESTRICTIONS:

The DX increment must be uniform between all the Y points. All values mast be floating point except N which must be an integer.

CALLING SEQUENCE:

$$
\begin{aligned}
& \quad \operatorname{SMPINT}(\mathrm{N}, \mathrm{DX}, \mathrm{Y}(\mathrm{DV}), \mathrm{A}) \\
& \text { or } \operatorname{TRPZD}(\mathrm{N}, \mathrm{DX}, \mathrm{Y}(\mathrm{DV}), \mathrm{A})
\end{aligned}
$$

SUBROUTINE NAME:
TRPZDA

PURPOSE:

This subroutine performs area integration by the trapezoidal rule. It should be used where the $D X$ increment is not uniform between the Y values but the corresponding X value for each Y value is known. The operation performed is as follows:

$$
A=\frac{1}{2} \Sigma(X i-X i-1) *(Y i+Y i-1) \quad, \quad i=2, N
$$

RESTRICTIONS:
All values mast be floating point numbers except the array length N which must be an integer.

CALLING SEQUENCE:

$$
\operatorname{TRPZDA}(N, X(D V), Y(D V), A)
$$

SUBROUTINE NAMES:
 PRESS or SPRESS

PURPOSE: These routines are useful for impressing nodal pressures in one dimensional flow paths once the entry pressure Pl, path conductance G and flow rate W are known. The respective equations are:

$$
\begin{aligned}
& \mathrm{P} 2=\mathrm{P} 1-W / G \\
& \text { or } \mathrm{P} 1(i+1)=P 1(i)-W / G(i), i=1,2,3, \cdots N
\end{aligned}
$$

RESTRICTIONS: For SPRESS, the pressures and conductors must be sequential and in ascending order, the number of pressure points to be calculated must be supplied as the integer N.

CALITING SEQUENCE: PRESS (P1,W,G,P2)

$$
\operatorname{SPRESS}(N, P I(D V), W, G(D V))
$$

SUBROUTINE NAME:

EFFG

PURPOSE: For a pressure network of the following type

where the values of the identified elements are known, this subroutine will calculate the effective conductance \mathcal{F} from P1 to P2. Any interconnections may occur in the space but only P2, P3 and P4 may be on the boundary and no elements may cross it. The equation utilized is:

$$
\mathrm{GE}=(\mathrm{G} 1 *(\mathrm{P} 1-\mathrm{P} 3)+\mathrm{G} 2 *(\mathrm{P} 1-\mathrm{P} 4)) /(\mathrm{P} 1-\mathrm{P} 2)
$$

FESTRICTIONS: See above. May not be used where capacitors appear on the internal nodes.

CALING SEQUENCE: $\operatorname{EFFG}(\mathrm{Pl}, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4, \mathrm{Gl}, \mathrm{G} 2, \mathrm{FE})$

SUBROUTINE NAME:

EFFEMS

PURPOSE: This subroutine calculates the effective emissivity E between parsilel flat plates by the following equation.

$$
E=1.0 /(1.0 / \mathrm{E} 1+1.0 / \mathrm{E} 2-1.0)
$$

where E1 and E2 are the emissivities of the two surfaces under consideration.
RESTRICTIONS: Arguments must be floating point numbers.
CALIING SEQUENCE: EFFEMS (E1,E2,E)

OUTPUT SUBROUTINES

NAME	PAGE
STNDRD, PRNTMP, PRINT, PRINTL	6.4 .1
PRINTA, PRNTMA	6.4 .2
SC-4020 Plotting Subroutines and Symbols	6.4 .3
¢PNPLT, PLTND, ENDFIL, FRAMEV	6.4 .3
PL 1 'TX1, PL \downarrow TX2	6.4 .4
	6.4 .5
PUNCHA, PNCHMA	6.4 .6
READ, WRITE, REWIND, EøF	6.4 .7

CORYB EA

PURPOSE:

Subroutine STNDRD causes a line of output to be printed giving the present time, the last time step used, the most recent CSGMIN value, the maximum diffusion temperature change calculated over the last time step and the maximum relaxation change calculated over the last iteration. RNN refers to the relative node number on which something occurred. The line of output looks as follows: * * * * TIME \qquad DTIMEU \qquad $\operatorname{CSGMIN}(\mathrm{RNN})$ \qquad DTMPCC(RNN) ___ ARLXCC(RNN) \qquad
Subroutine PRNTMP internally calls on STNDRD and also lists the temperature of every node in the network according to relative node number. The relative node number - actual node number dictionary printed out with the input data should be consulted to determine temperature locations on the thermal network model.

RESTRICTIONS:

No arguments are required or allowed. These subroutines should be used with network problems only.

CALLING SEQUENCE:
STMDRD
or PRNTMP

SUBROUTINE NAMES:
 PRINT or PRINTL

PURPOSE:

These subroutines allow individual floating point numbers to be printed out. The arguments mas reference temperature, capacitance, source locations, conductors, constants or unique array locations. In addition, subroutine PRINTL allows each value to be preceeded or labeled by a six character alphanumeric word. The number of arguments is variable but the "label" array used for FRINTL should contain a label for each argument.

RESTRICTIONS:

These subroutines do not call on STNDRD. The user may call on it if he desires time control information. Any control constant may be addressed in order to see what its value is, integers must first be floated.

CALLING SEQUENCE:

$$
\begin{aligned}
& \text { PRINT(T,C,Q,G,K, }, \ldots, A+) \\
\text { or } & \operatorname{PRINTL}(I A(D V), T, C, Q, G, K, \ldots, A+)
\end{aligned}
$$

SUBROUTINE NAME:
 PRINTA

PURPOSE:

This subroutine allows the user to print out an array of values, five to the line. The integer array length N and the first data value location must be specified. Each value receives an indexed label, the user must supply a six character alphanumeric word L to be used as a common label and an integer value M to begin the index count.

RESTRICTIONS:

The array values to be printed must be floating point numbers.
CALIING SEQUENCE:

$$
\operatorname{PRINTA}(L, A(D V), N, M)
$$

If the label was the work TEMP, N was 3 and M was 6 the line of output would look as follows:
$\operatorname{TEMP}(6)$ valueTEMP (7) value TEMP (\quad) value

SUBROUTINE NAME:
PRNTMA

PURPOSE:

This subroutine allows the user to print out up to 10 arrays in a column format. The individual elements are not labeled but each colum receives a two line heading of 12 alphanumeric characters each. The two line heading must be supplied as a single array of four words, six characters each. The user must supply the starting location of each label array and value array. The number of values in each value array must agree and be supplied as the integer N. The value arrays must contain floating point numbers.

RESTRICTIONS:
Labels must be alphanumeric while values must be floating point. All floating point value arrays must contain the same number of values.

CALIING SEQUENCE:

PRNTMA (N,LAI(DV) ,VAI(UV) ,LA2(DV) ,VA2(DV) , . . .)

SC-40天0 PLDTTING SUBRดUTINES AND SYMEQLS

CINDA-3G contains an integrated package of SC-4020 plotting subroutines lint. may be used to produce a variety of plotted output. Thesc plots are output by the computer onto magnetic tape which when processed by the $5 C-4020$ yields the plots on 35 mm . film which may then be processed to produce Zerox or some other type of hard copy. The plotting symbols (IS) availeble are as follows:

| Decimal Plot Decimal Plot | Decimal Plot | Decimal Plot | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Integer | Char. | Integer | Char. | Integer Char. | Integer Char. |

0	0	16	$+$	32	-	48	
1	1	17	A	33	J	49	/
2	2	18	B	34	K	50	S
	3	19	C	35	L	51	T
.	4	20	D	36	M	52	U
,	5	21	E	37	N	53	Y
6	6	22	F	38	\emptyset	54	W
\cdots	7	23	G	39	P	55	X
8	8	24	H	40	Q	56	Y
9	9	25	I	41	R	57	Z
10	∂	26	π	42	-	58	-
11	$=$	27		43	\$	59	
13	"	28)	44	\cdots	60	$($
13	1	29	β	45	γ	61	\int
14	δ	30	I	46	\sim	62	Σ
15	$\boldsymbol{\alpha}$	31	?	47	d	63	0

SURROUTINE NAMES:
QPNPLT or PLTND or ENDFIL or FRAMEV
PURPDSE: These subroutines perform the following uperations:
वPNPLT
This call rewinds the plot output tape. It should be the first plot call within any job and appear only once. A "job" may consist of one or more stacked problem runs.
PLTID This call empties the plot buffers. It should appear in every problem run within a job and after ail the quick plot calls.
ENDFIL This call writes an end of file on the plot output tape. It should be used only once in a job as the last cail of the last problem run in the job.
FRAMEV The plot frames produced on 35 mm . film are quite close together. This call places a blank frame on the film thereby allowing the good frames to be cut large enough for mounting as projector slides.

RESTRICTIONS: Check Section V, Control Cards and Deck Setup, for tape usage and control caids necessary.

CALLING SEQUENCE:

TPNPLT
or PLTND
or ENLFIL
or FRAMEV(3)
in: : cre subroutines are not rer red on the UNTVAC.-1108 system.

CINDA-3G

SUBROUTTNE NAMES:
 PIDTXI or PIDTX2

PURPOSE:

These are FotmRan coded quick plot subroutines for the SC-4020 which call upon a large package of undocumented subroutines specifically for the SC4020. They will produce up to three XY graphs per frame and several variables may be plotted per graph. A suitable grid will be drawn with certain lines emphasized. The grid lines will have reasonable numerical indicia and a centered title will be printed for both axes and at the top of the graph.

PIdTXI computes the minimum and maximum values of the stored X and Y arrays to be plotted and calls upon PLDTX2 which uses the values as grid limits for the graph. The user may set the grid limits by calling PL\&TXZ directly. The X, Y and top titles (XT, YT and TT respectively) must consist of 12 alphanumeric words of six characters each.

RESTRICTTONS:
The use: inovld consult Section 5, Control Cards and Deck Setup, to check tape designation requirements. The X and Y values must be floating point numbers.

CALLING SEQUZNCE:
$\operatorname{PLDTX}(\mathrm{N}, \mathrm{IS}, \mathrm{TX}(\mathrm{DV}), \mathrm{TY}(\mathrm{DV}), \mathrm{TT}(\mathrm{DV}), \mathrm{NP}, \mathrm{AX}(\mathrm{DV}), \mathrm{AY}(\mathrm{DV}))$
or PI\&TX2 $(N, X L, X R, Y B, Y T, I S, T X(D V), T Y(D V), T T(D V), N P, A X(D V), A Y(D V))$
where N is the integer number of graphs per frame (1, 2 or 3). If negative, the frame is advanced and a new grid produced; if zero, the grid from the previous plot call is used and if positive, the second or third graph for the frame is produced.
XL is the floating point X axis left limit
$X R$ is the floating point X axis right limit
$Y B$ is the floating point Y axis bottom limit
IT is the floating point Y axis top limit
IS is an integer identifying the plotting symbol to be used
TX is the address of the X title
TY is the address of the Y title
TT is the addiess of the top title
$N P$ is the integer number of $X Y$ values or points to be plotted, if negative the points will be connected by straight lines.
AX is the address of the X array
$A Y$ is the address of the Y arrey

CINDA-3G

SUBROUTINE NAMES: PLOTX3 or PLDTX4
PURPOSE:
These subroutines are similar to PLøTXI and PLøfX2 but have 6 additional arguments which allow the user to modify the grid as desired.

RESTRICTIONS:

See PIゆTXI and PI\&TX2.
CALIING SEQUENCE:

$$
\begin{gathered}
\mathrm{PL} \not \mathrm{TX} 3(\mathrm{~N}, \mathrm{IS}, \mathrm{TX}(\mathrm{DV}), \mathrm{TY}(\mathrm{DV}), \mathrm{TT}(\mathrm{DV}), \mathrm{NP}, \mathrm{AX}(\mathrm{DV}), \mathrm{AY}(\mathrm{DV}) \\
\mathrm{DX}, \mathrm{DY}, \mathrm{~L}, \mathrm{M}, \mathrm{I}, \mathrm{~J}) \\
\text { or } \mathrm{PL} \not \mathrm{PTX}(\mathrm{~N}, \mathrm{XL}, \mathrm{XR}, \mathrm{YB}, \mathrm{YT}, \mathrm{IS}, \mathrm{TX}(\mathrm{DV}), \mathrm{TY}(\mathrm{DV}), \mathrm{TT}(\mathrm{DV}), \mathrm{IP} \\
\mathrm{AX}(\mathrm{DV}), \mathrm{AY}(\mathrm{DV}), \mathrm{DX}, \mathrm{DY}, \mathrm{~L}, \mathrm{M}, \mathrm{I}, \mathrm{~J})
\end{gathered}
$$

where the arguments are identical to PLゆTXI and PLøTX2 except for
DX, DY these floating point values are used for syacing the grid lines which are centered on the zero values. If zero, no grid lines will be drawn.
$L, M \quad$ these integers cause every $L^{\text {th }}$ vertical and $M^{\text {th }}$ horizontal grid line to be redrawn for emphasis. If zero, no grid lines will be emphasized. If negative, a square grid will be produced.
I,J these integers cause every $I^{\text {th }}$ vertical and $J^{\text {th }}$ horizontal grid line to be labeled with its value. If zero, no grid lines will be labeled. If negative, the labels will be placed outside the grid, ctherwise they will appear on the zero axis.

SUBROUTTNE NAMES:

PLDTLI or PLDTL2

PURPOSE:

These subroutines are similar to PI $\phi \mathrm{TX} 1$ and PL $\phi \mathrm{TX} 2$ but produce $\log -\mathrm{semi}$, log-log or semi-log plots. The arguments are identical to PLff TXl and PIfTX2 except for one additional one which sets the plotting mode.

RESTRICTIONS:

See PL $\phi T X 1$ and PL $\$ \mathrm{TX} 2$. No limit may be zero.
CALLING SEQUENCE:
PL $\neq T L 1(N, I S, T X(D V), T Y(D V), T T(D V), N P, A X(D V)$, AY (DV), LM)
or PL\&TL2($\mathrm{N}, \mathrm{XL}, \mathrm{XF}, \mathrm{IB}, \mathrm{YT}, \mathrm{IS}, \mathrm{TX}(\mathrm{DV}), \mathrm{TY}(\mathrm{DV}), \mathrm{TT}(\mathrm{DV})$,
$N P, A X(D V), A Y(D V), L M)$
where the arguments are identical to PL\$TXI and PL $\$ T X 2$ except for LM
which is an integer for identifying the plotting mode as follows:
$L M<0$ produced plot wili be $\log X$ versus linear Y
$L M=0$ produced plot will be $\log X$ versus $\log Y$
LM >0 produced plot will be linear X versus $\log Y$.

SUBROUTINE NAME:
 PUNCHA

PURPOSE: This subroutine enables a user to punch out an array of data values in any desired format. The F argument must reference a F ϕ RTRAN FOPMAT which has been input as an array, including the outer parenthesis but deleting the word FDRMAT. The second argument must address the first data value of the array of sequential values. The third argument, N, must be the integer number of data values in the array. The output is written onto logical tape 15, the user must provide the necessary control cards and processing information for the operator.

RESTRICTIONS: The user should check Section V for the appropriate control card requirements. Punched output is written on logical tape 15, operator processing instructions should be supplied.

CALLING SEQUENCE: PUNCHA (F(DV), $A(D V), N)$

SUBROUTINF NAME:

PNCHMA

PURPOSE: This subroutine is similar to PUNCHA, but up to 10 equal length arrays of data values may be punched. Again the first argument must reference a F \emptyset RTRAN F $\not \subset M A T$ which has been input as an array, including the outer parenthesis, but deleting the word FøRMAT. The integer number of data values in an array must be supplied as the second argument N. The array starting locations then follow as arguments three up to twelve. The first values in each array is punched, then the second, etc.

RESTRICTIONS: The user should check Section V for the appropriate control card requirements. Punched output is written on logical tape 15, operator processing instructions should be supplied.

CALITING SEQUENCE: PNCHMA (F (DV),N,A1(DV),A2(DV), ...)

SUBROUTINE MMES: READ or WBITE

PURPOSE: These subroutines onable the user to read and write arrays of data as binary informetion on magnetic tape. The first argument I must be the integer number of the logical tape being addressed. The second argument X must addrese the first date value of the array to be written out or atarting location for data to be read into. The third argument N must be an integer. For WRITE it is the mumber of data values to be written on tape as a record. For READ it is the number of data values to be read in from tape from the next record, not necessarily the entire record.

FESTRICTIONS: The ueer should check Section V to determine which logical tape are available and control card requirements. All processed information munt be in binary.

CALITNG SEQUENCE: $\operatorname{READ}(\mathrm{L}, \mathrm{X}(\mathrm{DV}), \mathrm{N})$
or WRITE $(L, X(D V), N)$

SUBROUTTNE MM,
 E庆 or RENTND

PURPOSE: These subroutines enable the user to write ond of file marks on magnetic tape and to rewind them. They are generally used in conjunction with subroutines READ and WRITE discussed above. The single arguFrant L muat be the integer logical tape number of the unit boing activated.

FRSTRTCHIOS: The ueer ahould check Section V to determine available Logical tapes.
 or RENTND (L)

MATRIX SUBROUTINES

NAME	PAGE
ZER \varnothing, \varnothing NES, UNITY, SIGMA, GENALP, GENC \varnothing L	6.5 .1
SHIFT, REFLCT , SHUFL, C¢IMAX, C $¢$ IMIN	6.5 .2
ELEADD, EIESUB, EIEMUL, ELEDIV, ELEINV	6.5 .3
EFSIN, EFASN, EFCdS , EFACS, EFTAN, EFATN	6.5 .4
EFL¢f, , EFSQR, EFEXP, EFP¢W, MATRIX,SCALAR	6.5 .5
DISAS,ASSMBL, DIAG, C \varnothing LMLIT , R¢¢WMLT	6.5 .6
ADDALP, ALPHAA , AABB, BTAB	6.5 .7
INVRSE, MULT, TRANS	6.5 .8
PØIMLT, PøL'AL, PLYEVL, POIS¢V	6.5 .9
JACФBI, MøD: S	6.5 .10
MASS	6.5 .11
STIFF	6.5 .12
LIST, PLDT, PUNCH	6.5 .13
Matrix Data Storage and Retrieval	6.5 .14
CALL, FILE, ENDM ${ }^{\text {P }}$, LSTAPE	6.5 .14

Note: All of the above subroutines require that matrices be input as positive numbered arrays having the integer number of rows and colums as the first two data values followed by the floating point element values in row order. The above package of subroutines is often referred to (within CCSD) as M ϕ PAS, for Matrix Oriented Production Assembly System.

SUBROUTINE NAMES: ZERY or ØNES

PURPOSE: These subroutines generate a matrix [Z] sach that every element is zero or one respectively.

RESTRICTIONS: The matrix to be generated must contain exactly enough space in addition to having the integer number of rows and columns as the first two data values. The NR and NC arguments are the integer number of rows and columns respectively.

$$
\text { or } \not \subset \mathrm{NES}(\mathrm{NR}, \mathrm{NC}, \mathrm{Z}(\mathrm{IC}))
$$

SUUBROUTTNE NAMES:
UNITY or SIGMA
PURPDSE: These are square matrix generation subroutines. UNITY generates a square matrix such that the main diagonal elements are one and all other elements are zero. SIGMA generates a squars matrix such that all elements on and below the main diagonal are one and the remaining elements are zero.

RESTRICTIONS: The matrix [Z] to be generated must contain exactly enough space in addition to having the integer number of rows and columns as the first two data values. The integer number of rows and columns are equal and must be input as the argument N.

CALLING SEQUENCE:

$$
\begin{aligned}
& \operatorname{UNITY}(\mathrm{N}, \mathrm{Z}(\mathrm{IC})) \\
& \text { or } \mathrm{SIGMA}(\mathrm{~N}, \mathrm{Z}(\mathrm{IC}))
\end{aligned}
$$

SUBROUTINE NAMES:

GENALP or GENCøL

PURPOSE: These are special matrix generation subroutines. GENALP will generate a matrix such that every element is equal to a constant C. GENCDL will generate a column matrix such that the first element is equal to Xl and the last element is equal to X 2 . The intermediate elements receive equally incremented values such that a linear relationship is established between row number and element value.

RESTRICTIONS: The NR and NC arguments refer to the integer number of rows and columns respectively. X1, X2 and C must be floating point values. The generated matrices must sontain exactly enough space in addition to having the integer number of rows and columns as the first two data values.

CALLING SEQUENCE:

$$
\begin{aligned}
& \quad \operatorname{GRNALP(NR,NC,C,Z(IC))} \\
& \text { or } \operatorname{GENC} \neq \mathrm{L}(\mathrm{XI}, \mathrm{X2}, \mathrm{NR}, \mathrm{Z}(\mathrm{IC}))
\end{aligned}
$$

SUBROUTINE NAMES:
 SHIFT or REFLCT

PURPOSE: These subroutines may be used to move an entire matrix from one location to another. SHIFT moves the matrix exactly as is and REFLCT moves i.t and reverses the order of the elements within each column. The last element in each column becomes the first and the first becomes the last, etc.

RESTRICTIONS: The matrices rust be of identical size and the integer number of rows and columns must be the first two data values. The [Z] matrix may be overlayed into the [A] matrix.

CALLING SEQUENCE:

$$
\begin{gathered}
\operatorname{SHIFT}(A(I C), Z(I C)) \\
\text { or } \operatorname{REFLCT}(A(I C), Z(I C))
\end{gathered}
$$

*REFLCT uses three dynamic storage locations plus an additional one for each row.

SUBROUTINE NAME:
 SHUFL

PURPOSE: This subroutine allows the user to reorder the size of a matrix as long as the total number of elements remains unchanged. The row order input matrix [A] is transposed to achieve column order and then reformed as a vector by sequencing the columns in ascending order. This vector is then reformed into a column order matrix by taking a column at a time sequentially from the vector. The newly formed column matrix is then transposed and output as the row order matrix [Z].

RESTRICTIONS: The matrices must be identical in size and have their respective integer number of rows and columns as the first two data values. The number of rows time columns for [A] must equal the number of rows times columns of [Z].

CALLING SEQUENCE:
SHUFL(A(IC), Z(IC))

SUBROUTINE NAMES: CØIMAX or CDIMIN
PURPOSE: These subroutines search an input matrix to obtain the maximum or minimum values within each colum respectively. These va"ues are output as a single row matrix [Z] having as many columns as the input matrix [A].

RESTRICTIONS: Each matrix must have its integer number of rows and colums as the first two data values.

CALLING SEQUENCE:

$$
\begin{array}{r}
\text { CøIMAX(A(IC), } Z(I C)) \\
\text { or } \operatorname{C\not IMIN(A(IC),Z(IC))}
\end{array}
$$

SUBROUTTNE NAMES:

ELEADD or EIESUB

PURPOSE: These subroutines add or subtract the corresponding elements of two matrices respectively.
$\stackrel{m \div n}{[z]}=\stackrel{m \times n}{[A]} \pm \underset{[B]}{m \times n}, \quad z_{i j}=a_{i j} \pm b_{i j}$

RESTRICTIONS: All matrices mast be of identical size and have the integer number of rows and columns as the first two data values. The [Z] matrix may be overlayed into the $[A]$ or $[B]$ matrix.

CALLING SEQUENCE:

$$
\begin{aligned}
& \operatorname{ELEADD}(A(I C), B(I C), Z(I C)) \\
& \text { or } \operatorname{ELESUB}(A(I C), B(I C), Z(I C))
\end{aligned}
$$

SUBROUTINE NAMES:

ELFMUL or ELEDIV

FURPOSE: These subroutines multiply or divide the corresponding elements of two matrices respectively.

$$
\frac{m \times n}{[Z]}=\frac{m * n}{[A]} \approx / \frac{m * n}{[B]}, \quad z_{i j}=a_{i j} * / b_{i j}
$$

RESTRICTIONS: All matrices must be of identical size and have the integer number of rows and colums as the first two datr vilues. The [Z] matrix may be overlayed into the [A] or [B] metrix.

CALITNG SEQUENCE: ELEMUL(A (IC) $\mathrm{B}(-\mathrm{C}), \mathrm{Z}(\mathrm{IC}))$
or ELEDIV(A(IC) $, B(I C), Z(I C))$

SUBFOUTINE NAME:

EIEINV
PURPOSE: This subroutine obtains the reciprocal of each element of the A matrix and places it in the corresponding element location of the $[Z]$ matrix.

$$
z_{i j}=1.0 / a_{i j}
$$

RESTRICTIONS: The matrices must be of identical size and have the integer number of rows and columns as the first two data values. The [Z] matrix may be overlayed into the [A] matrix.

CAL工MG SEQUENCE: EIEINV(A(IC),Z(IC))

SUBROUTINE NAMES:

EFSIN or EFASN

PURPOSE: These subroutines perform elementry functions on all of the [A] matrix elements as follows:

$$
z_{i j}=\operatorname{ine}\left(a_{i j}\right) \text { or } z_{i j}=\operatorname{arcsine}\left(a_{i j}\right)
$$

RESTRICTIONS: The matrices must be identical in size and have the integer number of rows and colums as the first two data values. The [4] matrix may be overlayed into the $[A]$ matrix.

CALITNG SEQUENCE:

$$
\begin{gathered}
\operatorname{EFSIN}(A(I C), \mathrm{Z}(\mathrm{IC})) \\
\text { or } \operatorname{EFASN}(\mathrm{A}(\mathrm{IC}), \mathrm{Z}(\mathrm{IC}))
\end{gathered}
$$

SUBROUTINE NAMES:

EFCDS or EFACS

ITJRPOSE: These subroutines perform elementary functions on all of the $[\mathrm{A}]$ matrix elements as follows:

$$
z_{i j}=\operatorname{cosine}\left(a_{i j}\right) \text { or } z_{i j}=\operatorname{arccosine}\left(a_{i j}\right)
$$

RESTRICTIONS: The matrices must be identical in size and have the integer number of rows and columns as the first two data values. The [Z] matrix may be overlayed into the [A] matrix.

CALLING SEQUGINCE:

$$
\begin{gathered}
\operatorname{EFCOS}(A(I C), Z(I C)) \\
\text { or } \operatorname{EFACS}(A(I C), Z(I C) .
\end{gathered}
$$

SUBROUTINE NAMES:

EFTAN or EFATN

PURPOSE: These subroutines perform elementary functions on all of the [A] matrix elements as follows:

$$
z_{i j}=\text { tangent }\left(a_{i j}\right) \text { or } z_{i j}=\operatorname{arctangent}\left(a_{i j}\right)
$$

RESTRICTIONS: The matrices must be of identical size and have the integer number of rows and columns as the first two data valies. The [z] matrix may be overlayed into the [A] matrix.

CALLING SEQUENCE:

$$
\begin{array}{r}
\operatorname{EFTAN}(A(I C), Z(I C)) \\
\text { or } \operatorname{EFATN}(A(I C), Z(I C))
\end{array}
$$

CINDA-3G

SUBROUTINE NAME: EFLOG or EFSQR

PURPOSE: Trese subroutines perform elementary functiors on all of the [A] matrix elements as follows:

$$
z_{i j}=\log _{e}\left(a_{i j}\right) \text { or } \quad z_{i j}=\sqrt{a_{i j}}
$$

RESTRICTIONS: The matrices must be identical in size and have the integer number of rows and colums as the first two data values. All elements in the $[A]$ matrix mast be positive.

CAJLING SEQUENCE:

$$
\begin{array}{r}
\text { EFLOG(A(IC),Z(IC)) } \\
\text { or } \operatorname{EFSQR}(A(I C), Z(I C))
\end{array}
$$

SUBROUTINE NAMES:

EFEXP or EFPGW
PURPOSE: These subroutine perform elementary functions on all of the [A] matrix elements as follows:

$$
z_{i j}=e^{a_{i j}} \quad \text { or } \quad z_{i j}=a_{i j} \alpha^{\alpha}
$$

RESTRICTIONS: The matrices must be identical in size and have the integer number of rows and colums as the first two data values. The [Z] matrix may be overlayed into the $[A]$ matrix. The exponent α may be an integer or floating point number. However, if any elements in [A] are negative then α must be an integer.

CALLING SEQUENCE: EFEXP(A(IC),Z(IC))
or $\operatorname{EFP\phi W}(A(I C), \alpha, Z(I C))$

SUBROUTINE NAMES:
MATRIX or SCALAR
PJRPOSE: Subroutine MATRIX allows a constant to replace a specific matrix element and subroutine SCAIAR allows a specific matrix element to be placed into a constant location. The integers I and J designate the row and colum position of the specific element.

$$
z_{i j}=C \quad \text { or } \quad C=z_{i j}
$$

RESTRICTIONS: The matrix must have the integer number of rows and columns as the first two data values. Checks are made to insure that the identified element is within the matrix boundaries.

CALLING SEQUENCE:

$$
\begin{array}{r}
\text { MATRIX(C,I,J,Z(IC)) } \\
\text { or } \operatorname{SCAIAR}(Z(I C), I, J, C)
\end{array}
$$

SUBROUTINE NAMES:
 DISAS or ASSMBL

PURPOSE: These subroutines allow a user to operate on matrices in a partioned manner by disassembling a submatrix [Z] from a parent matrix [A] or assembling a submatrix [Z] into a parent matrix [A].

RESTRICTIONS: The I and J arguments are integers which identify (by row and column number respectively) the upper left hand cormer position of the submatrix within the parent matrix. All matrices must have exactily enough space and contain the integer number of rows and culums as the first two \therefore sta values. The NR and NC arguments are the integer number of rows and columns respectively of the disassembled submatrix. If the submatrix exceeds the bounds of the parent matrix an appropriate error message is written and the program terminated.

CALIING SEQUENCE:

$$
\begin{aligned}
& \operatorname{DISAS}(A(I C), I, J, N H, N C, Z(I C)) \\
& \text { or } \operatorname{ASSMBL}(Z(I C), I, J, A(I C))
\end{aligned}
$$

SUBROUT INE NAMES:
 DIAG

PURPCSE: Given a $1^{*}{ }^{*}$ or N^{*} I matrix [V] this subroutine forms a full square N*W matrix [Z]. The [V] values are placed sequentially on the main diagonal of [z] and all off diagonal elements are set to zero.

RESTRICTIONS: Both Hiatrıces mast have exactly enough space and contain their integer number of rows and colums as the first two data values.

CALLING SEQUENCE: \quad DIAG(V(IC), $\mathrm{Z}(\mathrm{IC}))$

SUBROUTTNE NAMES:
COLMLT or ROWMLT
FURPOSE: To miltiply each element in a column or row of matrix [A] by its corresponding element from the matrix [V] which is conceptually a diagonal matrix but stored as a vector; i.e., $1 * N$ or $N * 1$ matrix. The matrix [Z] is the product.

RESTRICTIONS: The matrices mast have exactly enough space and contain the integer number of rows and columns as the first two date values. The matrices being multiplied must be conformable.

CALIING SEQUENCE:
C \varnothing IMIT ($A(T C), V(I C), Z(I C))$
or ECWMIT (V(IC),A(IC), Z(IC))

SUBROUTINE NAMES: ADDALP or ALPHAA
PURPOSE: To add a constant to or multiply a constant times every lement in a matrix.

$$
z_{i j}=C+a_{i j} \text { or } z_{i j}=C_{K_{1 j}}
$$

RESTRICTIONS: The matrices must have exactly enough space and contain the integer number $\cap f$ rows and columns as the first two data values. C and all elements must be floating point numbers. The $[Z]$ matrix may be overlayed into the $[A]$ matrix.

CALLING SEQUENCE: \quad ADDALP(C,A(IC), $\mathrm{Z}(\mathrm{IC})$)
or ALPHAA (C,A(IC), Z(IC))

SUBROUTINE NAME:
AABB
PURPOSE: To sum two scaled matrices.

RESTRICTTONS: All matrices must be of identical size, contain exactly enough space and contain the intege. number of rows and columns as the first two data values. The output matrix [Z] may be overlayed into either of the input matrices.

CAL工ING SEQUENCE: $\quad A A B B(C 1, A(I C), C 2, B(I C), Z(I C))$

SUBHOUTINE NAME:
 BTAB

PURPOSE: To perform the following matrix operation:

$$
\frac{n^{*} n}{[Z]}=n^{n^{*} m}[B]^{t} \quad \stackrel{m^{*} m}{[A]} \quad[B]
$$

RESTRICTIONS: The matrices mast be conformable, contain exactly enough space and contain the integer number of rows and columns as the first two data values. Subroutines MULT and TRANS are called on.

CALLING SEOUENCE:

$$
\operatorname{BTAB}(A(I C), B(I C), Z(I C))
$$

NOTE: This subroutine (due to MULT and TRANS) uses $2^{2} \operatorname{man}^{k} n+6$ dynamic storage locations.

SUBPOUT NE NAME:

INVRSE
PURPOSE: To invert a square matrix.

RESTRICTIONS: The mairices must be square, identical in size and contain the integer number of rows and colums as the first two data values. The output matrix [Z] may be overlayed into the [A] matrix.

CALLING SEQUENCE:
INVRSE(A(IC) , Z(IC))
NOTE: This subroutine requires n dynamic storage allocations.

SUBROUTINE NAME: MULT

PURPOSE: To multiply two conformable matrices together.

RESTRICTIONS: The matrices must have exactly enough space and contain their integer number of rows and columns as the first two data values. If $[A]$ and $[B]$ are square, [$Z]$ may be overlayed into either of them.

CALLING SERUENCE:
$\operatorname{MULT}(A(I C), B(I C), Z(I C))$
NOTE:- This subroutine required n *m dynamic storage locations.

SUBROUTINE NAME:

TRANS

PURPOSE:

Given a matrix
minn
n * ${ }^{n}$
[2]

PE.JTRICTIONS: Both matrices must have exactly enough space and contain their integer number of rows and columns as the first two data values.
Theoutput matrix [Z] may be overlayed into the [A] matrix.
CALLING SEQUENCE: \quad TRANS (A(IC) $\mathrm{Z}(\mathrm{IC})$)
NOTE: This subroutine requires n*m dynamic storage locations.
chargeten
CINDA-3G

SUBROUTINE NAME:

PøIMLT

PURPOSE: This subroutine performs the multiplication of a given number of $n^{\text {th }}$ order polynurial coefficients by a similar number of $\mathrm{m}^{\text {th }}$ order polynomial coelficients. The polynomials must be inpu', as matrices with the number of rows equal and each row receives the following operation.

$$
\left(c_{1}, c_{2}, c_{3}, \ldots, c_{k}\right)=\left(a_{1}, a_{2}, \ldots, a_{n}\right) *\left(b_{1}, b_{2}, \ldots, b_{m}\right), k-\frac{m}{}+n-1
$$

RESTRICTIONS: The matrices must have exactly enough space and contain their integer number of rows and colums as the first two data values.

CALLING SEQUENCE: \quad PØIMLT(A(IC), B(IC),((IC))

SUBPOUTINE NAME:
 PCLVAL

PURPOSE: Given a set of polynomial coefficients as the first row of matrix [A] this subroutine evaluates the polynomial for the input complex number X+iY. The answer is returned as U+iV.

RESTRICTIONS: [A] may be mn but oniy the first row is evaluated.
CALLING SEQUENCE:
PøLVAL(A (IC) ,X,Y,U,V)

SUBROUTINE NAME:

PLYEVL

PURPOSE: Given a matrix [A] containing an arbitrary number NRA of $n{ }^{\text {th }}$ order polynomial coefficients and e. column matrix [X] containing an arbitrary number NRX of x values, this subroutine evaluates each polynomial for each x value. The answers are output as a matrix [Z] of size NRX*NRA. Each set, of polynomial coefficients in [A] is a row in ascending order. An x value evaluated for the polynomials creates a row in [2] where the column number agrees with the polynomial row number.

RESTRICTIONS: The matrices must have exactly enough space and contain their integer number of rows and columns as the first two data values.

CALLING SEQUENCE: PLYEVL(A (IC) $, \mathrm{Z}(\mathrm{IC}), \mathrm{Z}(\mathrm{IC})$)

SUBROUTINE NAME:

PดISด才

PURPOSE: Given a set of polynomial coefficients as the first row in matrix $[A]$, size $(m, n+1)$, this subroutine calculates the complex roots which are returned as matrix [Z], size $(n, 2)$. Colum l contains the real part and column 2 the imaginary part of the roots.

RESTRICTIONS: This subroutine presently is limited to $n=20$. It internally calls on RTPDIY and utilizes some double precision.

CALLING SEQUENCE:

$$
P \phi I S \not \subset V(A(I C), Z(I C))
$$

SUBROUTINE NAME:

JAC $\bar{B} B I$

PURPOSE: This subroutine will find the eigenvalues [E] and eigenvector matrix [Z] associated with an input matrix [A].

RESTRICTIONS: The matrices must have exactly enough space and contain their integer number of rows and columns as the first two date values.

CALLING SEQUENCE: JACØBBI(A(IC), E(IC),Z(IC))
NOTE: This subroutine requires $2{ }^{2} n^{n}{ }_{n}+6$ dynamic storage locations.

SUBFOUTINE NAME:
MODES
PURPOSE: This subroutine solves the following dynamic vibration equation

$n^{*} n$	$n^{*} n$			
$[A]$	$[Z]$	$=$	$n^{*} n$	$n^{*} n$
:---:	:---:			
$[B]$	$[Z]$	\(\left[\begin{array}{c}n^{*} 1 		

\frac{1}{W^{2}}\end{array}\right]\)
where [A] is the input inertia matrix associated with the kinetic energy and $[B]$ is the input stiffness matrix asscciated with the strain energy. $[Z]$ is the output eigenvector matrix associated with the frequencies of vibration W_{i} which are output in radians/sec as $[R]$ and in cycles/sec as $[C]$, both $[R]$ and $[C]$ are $n^{*} 1$ matrices.

RESTRICTIONS: The matrices must have exactly enough space and contain their integer number of rows and colums as the first two data values. Subrcitine JACøBI is called on.

CALLING SEQUENCE: MøDES(A (IC) $\mathrm{B}(\mathrm{IC}), \mathrm{Z}(\mathrm{IC}), \mathrm{R}(\mathrm{IC}), \mathrm{C}(\mathrm{IC}))$
NOTE: This subroutine requires $3^{3} n^{3} n+9$ dynamic storage locations.

SUBROUTINE NAME:
 MASS

PURPOSE:

If a dymamic vibration problem is referred to a set of coordinates consisting of the deflections, ζ_{i}, and the rotations, θ_{i}, at N collocation points along the beam under consideration, then this subroutine generates the $2 N$ by $2 N$ inertia matrix [A] which appears in the following expression for kinetic energy:

BESTRICTIONS:
The mass and inertia data input to this subroutine are to be supplied as piecewise continuous slices; however, these arrays may be of arbitrary size and different in length from each other. The number of collocation points, N, which determines the ultimate size, $2 N$ by $2 N$, of the output inertia matrix, is also chosen arbitrarily.

CALLING SEQUENCE:

$$
\operatorname{MASS}(\mathrm{X}(\mathrm{IC}), \mathrm{DMPL}(\mathrm{IC}), \mathrm{RITPL}(\mathrm{IC}), \mathrm{CM}(\mathrm{IC}), \mathrm{A}(\mathrm{IC}))
$$

```
where X is the matrix (N X l) of collocation points referred
    to an arbitrary origin.
    DMPL is the matrix (NDM X 4) of distributed mass per unit
        length slices, where
        Col I is the location of the rear of a slice.
        Col 2 is the location of the front of a slice.
        Col 3 is the mass value at the rear of the slice.
        Col }4\mathrm{ is tre mass value at the front of the slice.
    RIPL is the matrix (NRI X 4) of distributed rotary inertia
        per unit length slices. The columns here are similar
        to DMPL.
    CM is the matrix (NCM X 4) of concentrated mass items, where
        Col l is the attach point location for each item.
        Col }2\mathrm{ is the mass at this location.
        Col 3 is the location of its center of gravity.
        Col 4 is the moment of inertia about the C. of G.
    A is the output (2N X 2N) inertia matrix.
```


$\mathrm{N} \not \mathrm{TE}:$

Having application to DMPL, RIPL and CM, it is noted that the location of the values may not go beyord the limits of the collocation points in either direction.

SUBROUTINE NAME:
 STIFF

PURPOSE:

If a dynamic vibration problem is referred to a set of cocrdinates consisting of the deflections, ζ_{i}, and the rotations, θ_{i}, at N collocation points along the beam under consideration, then this subroutine generates the 2 N by 2 N stiffness matrix $[\mathrm{K}]$ which appears in the following expression for the strain energy:

RESTRICTIONS:

The stiffness and shear data input to this subroutine are to be supplied as piecewise continuous slices; however, these arrays may be of arbitrary size and different in length from each other. The number of collocation points, N, which determine the ultimate size, 2 N by 2 N , of the output stiffness matrix, is also chosen arbitrarily.

CALLTNG SEQUENCE: $\operatorname{STIFF}(X(I C), E I(I C), G A(I C), K(I C))$
where X is the matrix (N X 1) of collocation points referred to an arbitrary origin.
EI is the matrix (NEI X 4) of bending stiffness slices, where Col 1 is the location of the rear of a slice.
Col 2 is the location of the front of a slice.
Col 3 is the stiffness value at the rear of a slice. Coi 4 is the stiffness value at the front of a slice.
GA is the matrix (NGA X 4) of shear stiffness slices, where the colums here are similar to those for the EI distribution.
K is the output stiffness matrix size $2 N$ by $2 N$.

NøTE:

Having application to EI and GA, it is noted that the locaticn of the values may not go beyond the limits of the collocation points in either direction.

CINDA-3G

SUBROUT INE NAME: LIST
PURPOSE: This subroutine prints out the elements of a matrix A and identifies each by its row and column number. The user must supply an alphanumeric name ALP and integer number NUM to identify the matrix. This is to maintain consistency with subroutines FILE and CALL.

RESTRICTIONS: The matrix must have its integer number of rows and columns as the first two data values.

CALING SEQUENCE: LIST(A (IC) ,ALP,NUM)

SUBROUTINE NAME:

PLOT

PURPOSE: This subroutine produces $S C-4020$ plots of the columns of a matrix A , size ($n * m$) versus a column matrix X, size ($n * 1$). It order the data internally and then calls on subroutine PIф́TXI (page 6.4.4). Each column in A requires as 12 word label for the Y axis title (YT) which mast be entered sequentially as an array. The X axis title (XT) and top title (TT) must each consist of 12 work arrays.

RESTRICTIONS: The matrices must have exactly enough space and contain the integer number of rows and columns as the first two data values. The titles must have been input as positive arrays.

CAILING SEQUENCE:

$$
\operatorname{PLOT}(A(I C), X(T C), T T(I C), Y T(I C), X T(I C))
$$

NOTE: This subroutine requires $m+3$ dynamic storage locations.

SUBROUTINE NAME:

PUNCH

PURPOSE: This subroutine punchs out a matrix A, size $n^{*} m$, one column at a time in any desired format. The argument $F \not \subset R$ must. reference a F \varnothing RTRAN format statement that has been input as a positive array. It must include the outer parenthesis but not the word FめRMAT. The argument HEAD must be a single BCD word used to identify the matrix. Each column is designated and restarts use of the F \varnothing RMAT statement.

RESTRICTIONS: The matrix A must have exactly enough space and contain the integer number of rows and colums as the first two data values.

CALLING SEQUENCE:
PUNCH (A (IC) , HEAD , FØR(IC))

NOTE: This subroutine requires $n+3$ dynamic storage locations.

MATRIX DATA STORAGE AND RETRIEVAL

The ability to store and retreive matrices from tape is easily achieved thru the use of the FIIE, and CALL subroutines. Matrices are identified by an alphanumeric name, integer problem number and the core address of or for the matrix. The CALL subroutine searches the matrix storage tape on logical i3 and brings the desired matrix into core. The FILE subroutine writes a matrix onto the logical 12 tape. Subroutine ENDM \neq causes all matrices from the logical 12 tape to be updated onto the logical 13 tape. In case of duplicate matrices the one from logical 12 replaces the one on logical 13. A matrix which has been filed cannot be called until en ENDM \varnothing P operation has been performed. To create a new tape the user merely sets control constant N $\varnothing \subset \varnothing \mathrm{PY}$ nonzero and has a scrat.ch tape mounted on logical 13. The user should check the section on control cards and deck setup to determine control card requirements.

SUBROUTTNE NAMES: CALL or FILE
PURPOSE: To allow the user to retrieve or store matrices on magnetic tape, see above. The H argument muet be a six character alphanumeric word and N nust be an integer number, both of which are used to identify the matrix.

RESTRICTICNS: See above. The matrix must have exactly enough space and contain the integer number of rows and columns as the first two data values.

CALLING SEQUENCE: CALE (H,N,A(IC))
or FILE ($\mathrm{A}(\mathrm{IC}), \mathrm{H}, \mathrm{N}$)
SUBROUTINE NAMES: ENDMWP or ISTAPE
PURPOSE: Subroutine ENDM $/ \mathrm{P}$ should be used in conjunction with subroutines CAIL and FIIE, see above. It causes matrices which have been filed by FILE on logical 12 to be updated ontc logical 13. A call to subroutine LSTAPE will cause the output of the name, problem numior and size of every matrix stored on tape on logical 13.

RESTRICTIONS: See above.
CALITNG SEQUENCE: ENDM \varnothing
or LSTAPE

Special Subroutines

Name	Page
SIMEQN, LSTSQU	6.6 .1
IRRADE, IRRADI	6.6 .2
SLRADE, SLRADI, SCRPFA	6.6 .3
ABLATS	6.6 .4
IQDVAP, BIVLV	6.6 .5

Chayste

SUBROUTINE NAME: . SIMEQN

PURPOSE:

This subroutine solves a set of up to 10 linear simultaneous equations by the factorized inverse method. The problem size and all input and output vahes are communicated as a single specially formatted positive input array. The array argument must address the matrix order (N) which is input by the user. The first data value must be the integer order of the set (or size of the square matrix) followed by the coefficient matrix [A] in column order, the boundary vector $\{B$ and space for the solution vector $|S|$.

$$
\text { (A] }|S|=|B|
$$

RESTRICTIOIS:

The integer count and matrix size must be integers, all other values must be floating point. The coefficient matrix is not modified by SIMEQN. Hence, changes to $\{B \mid$ only allow additional solutions to be easily
obtained.
CAILING SEQUENCE: STMEQN(A (N))
where the array is formatted exactly as follows:

$$
I C, N, A(1,1), A(1,2), \ldots, A(N, N), B 1, \ldots, B N, S 1, \ldots, S N
$$

SUBROUTINE NAME:
 LSTSQU

PURPOSE:

This subroutine performs a least squares curvé fit to an arbitrary number of X, Y pairs to yield a polynomial equation of up to order 10. Rather than using a double precision matrix inverse, this subroutine calls on subroutine SIMEQN to obtain a simultaneous solution.

RESTRICTIONS:
All values must be floating point numbers except N and M which must be integers. N is the order of the polynominal desired and is one less than the number of coefficients desired. M is the array length of the independent X or dependent Y values.

CAL工壻G SEQUENCE:

$$
\operatorname{ISTSQU}(N, M, X(D V), Y(D V), A(D V))
$$

\#This subroutine requires $2 * M$ dynamic storage core locations.

CINDA-3G

SUBROUTINE NAME: IRRADI or IRRADE

PTRPOSE: These subroutines simulate a radiosity network ${ }^{\text {t }}$ within a ailtiple gray surface enclosure containing a non-absorbing mecia. The input is identical for both subroutines. However, IRRADE utilizes explicit equations to citain the solution by relaxation and IRRADI initially performs a symnetric matrix algebra inverse and thereafter obtains the exact solution implicitly by matrix multiplication. The relaxation criteria of IRRADE is internally calculated and severe enough so that both routines generally yield identical results. However, IRRADE should be used when temperature varying emissivities are to be considered and IRRADI should be used when the surface emissivities are constant. Both subroutines solve for the J node radiosity, obtain the net radiant heat flow rates to each surface and return them sequentially in the last array that was initially used to input the surface temperatures. The user need not specify any radiation conductors within the enclosure.

RESTRICTIONS: The Fahreheit system is required. The arbitrary number of temperature arguments may be constructed by a preceeding BLDARY call. The emissivity, area, temperature-Q and upper half FA arrays must be in corresponding order and of exact length. The first data value of the FA array must be the integer number of surfaces and the second the Stephan-Boltzman constant in the proper units and then the FA floating point values in row order. The diagonal elements (even if zero) must be included. As many radiosity subroutine calls as desired may be used. However, each call must have unique array arguments. The user should follow the radiosity routine by SCALE, BRKARY or BKARAD to distribute the Q's to the proper source locations.

CALLTNG SEQUENCE:

$$
\begin{aligned}
& \operatorname{IRRADI}(\mathrm{AA}(\mathrm{IC}), \mathrm{AE}(\mathrm{IC}), \mathrm{AFA}(\mathrm{IC}), \mathrm{ATQ}(\mathrm{IC})) \\
& \text { or } \quad \operatorname{IRRADE}(\mathrm{AA}(\mathrm{IC}), \mathrm{A} \in(\mathrm{IC}), \mathrm{AFA}(\mathrm{IC}), \mathrm{ATQ}(\mathrm{IC}))
\end{aligned}
$$

where the arrays are formatted as follows:

$$
\begin{aligned}
& \text { AA (IC) , A1, A2 , A3 , A4, . . . AN, END } \\
& A \in(I C), \epsilon 1, \in 2, \in 3, \epsilon 4, \ldots, \in N, E N D \\
& \mathrm{AFA}(\mathrm{IC}), \mathrm{N}, \boldsymbol{\sigma}, \mathrm{FA}(1,1), \mathrm{FA}(1,2), \mathrm{FA}(1,3), \mathrm{FA}(1,4), \mathrm{FA}(1,5), \ldots \operatorname{FA}(1, \mathrm{~N}) \\
& \mathrm{FA}(2,2), \mathrm{FA}(2,3), \mathrm{FA}(2,4), \mathrm{FA}(2,5), . . . \operatorname{FA}(2, N) \\
& \mathrm{FA}(\mathrm{~N}-\dot{2}, \mathrm{~N}-2), \mathrm{FA}(\mathrm{~N}-\dot{2}, \mathrm{~N}-1), \dot{\mathrm{FA}}(\mathrm{~N}-2, \mathrm{~N}) \\
& \mathrm{FA}(\mathrm{~N}-1, \mathrm{~N}-1), \mathrm{FA}(\mathrm{~N}-1, \mathrm{~N}) \\
& \text { FA }(N, N), E N D
\end{aligned}
$$

ATQ(IC), T1, T2, T3, . . .TN,END
where $F A(1,2)$ is defined as $A(1) H F(1,2)$. After the subroutine is performed the $A T Q$ array is $A T Q(I C), Q 1, Q 2, Q 3, ~ . . . Q N, E N D$. Since $F A(1,2) \equiv F A(2,1)$ only the upper half triangle of the full A matrix is required. IRRADI inverts this half matrix in its own area, hence approximate ly 300 surfaces may be considered using CINDA-3G on a 65 K core machine.
*"Radiation Analysis by the Network Method," A. K. Oppenheim, Transaction of the ASME, May 1956, pp. 725-735.

CINDA-3C

SUBROUTINE NAME: SLRADI or SLRADE

PURPOSE: These subroutines are very similar to IRRADI and IRRADE but are designed to solve for the solar heating rates within an enclosure. SLRADI inverts a half symetric matrix in order to obtain implicit solutions while SLRADE obtains solutions explicitly by relaxation. SLRADE should be used when temperature varying solar emissivities are to be considered. The second data value of the AFA array must be the solar constant in the proper units. The AT array allows the user to input the angle (degrees) between the surface normal and the surface-sun line. The AI array allows the user to input an illumination factor for each surface which is the ratio from zero to one of the unshaded portion of the surface. The solar constant (S), AT and AI values may vary during the transient ibr both routines. No input surface temperatures are required. The absorbed heating rates are returned sequentially in the $A Q$ array, the user may utilize SCALE, BRKARY or BKARAD to distribute the heati. g rates to the proper source locations.

RESTRICIIONS: These routines are independent of the temperature system being used. All of the array arguments must reference the integer count set by the CINDA-3G preprocessor and be of the exact required length. As many calls as desired may be made but each call must have unique array arguments.

CALLING SEQUENCE: $\quad \operatorname{SLRADI}(\mathrm{AA}(\mathrm{IC}), \mathrm{A} \in(I C), \mathrm{AFA}(\mathrm{IC}), \mathrm{AT}(\mathrm{IC}), \mathrm{AI}(\mathrm{IC}), \mathrm{AQ}(\mathrm{IC}))$
or $\operatorname{SLRADE}(\mathrm{AA}(\mathrm{IC}), \mathrm{A} \in(\mathrm{IC}), \mathrm{AFA}(\mathrm{IC}), \mathrm{AT}(\mathrm{IC}), \mathrm{AI}(\mathrm{IC}), \mathrm{AQ}(\mathrm{IC}))$

SUBROUTTNE NAME: SCRPFA

PURPOSE: To obtain the script FA value for radiant transfer within an enclosure. The input arrays are formated as shown for subroutines IRRADI and IRRADE. The socond data value in the AFA array is used as a final multiplier, if 1.0 the script $F A$ values are retarned, if σ then script σ FA values are returned. The script FA values are returned in the ASFA array which is formatted identical to the AFA array and may overlay it.

RESTRICTIONS: All array arguments must reference the integer count set by the CINDA-3G preprocessor and all arrajs must be exactly the required lengtr.
CALLING SEQUENCE: - SCRPFA(AA(IC), A $\boldsymbol{C}(\mathrm{IC}), \mathrm{AFA}(\mathrm{IC}), \mathrm{ASFA}(\mathrm{IC}))$
NOTE: Subroutine SYMLST(ASFA(IC)+3,ASFA(IC)+1) may be called to list the matrix values and identify them by row and colum number. This routine and the implicit radiosity routines finalize the half symetric coefficient matrix and call on SYMINV(AFA(IC) +3 , AFA(IC) +1) to obtain the symetric inverse.

SUBROUTINE NAME:

ABIATS

PURPOSE: To provide a simple ablation (sublimation) capability for the CINDA-3G user. The user constructs the 3-D network without considering the ablative. Then in Variables 2 he simulates l-D ablative attachments by calling ABLATS. ABLATS constructs the l-D network and solves it by implicit forward-backward differencing (Crank-Nicholson method) using the time step set by the execution subroutine. Separate ablation arrays (AA) must be used for each ABLATS call. Required working space is obtained frou unused program common. Several ABLATS calls thereby share unused common. The user must call subroutine PNTABL(AA) in the OUTFUT CALLS to obtain the ablation totals and temperature distribution.

RESTRICTIONS: ABLATS must be called in VARIABLES 2 and may be used with any execuilion subroutine. Subroutines DIDEGI, NEWTR4 and INTRFC are called. All units must be consistent. The Fahrenheit system is required. Temperature varying material property arrays must not exceed 60 doublets. Bivariate material properties ay be simulated by calling BVSPSA prior to ABLATS. Cross-sectional area is always considered unity. Thermal conductivity, Stephan-Boltzman constant and density units must agree in area and length units.

CALLING SEQUENCE: ABLATS(AA(IC),R,CP,G,T,C)
where C is the capacitance location of the 3-D node attached to.
T is the temperature location of the 3-D node attached to.
G is the lication of the material thermal conductivity or the starting location (integer count) of a doublet G vs T array.
CP is the location of the material specific heat or the starting location (integer count) of a doublet C_{p} vs T array.
R is the location of the material density or the starting location (integer count) of a doublet is T array.
$\mathrm{AA}(\mathrm{IC})$ is the starting location of the ablation array which must be formatted as follows:
AA(IC) +1 the ablative link number a user specified identification integer.
2 integer number of sublayers (NSL) desired, ABLATS subtracts from this the number of sublayers ablated.
3 the initial temperature of the material, ABLATS replaces this with the outer surface temperature, always in degrees F.
4 the impressed outer surface heating rate per unit area, radiation rates not included.
5 material thickness, this is replaced by the sublayer ihickness.
6 surface area of the 3-D node attached to, need not be unity.
7 ablation temperature, degrees F.
8 heat of ablation
9 Stephan-Boltzman constant in consistent units.
10 surface emissivity
11 space "sink" temperature, degrees F.
12 SPACE, N , END where N equals $\mathrm{NSI}+4$.
NOTE: The outer surface radiation loss is integrated over the time step. *This subroutine requires $3 *($ NSL +1) dynamic storage core locations.

CINDA-3G

SUBROUTINE NAME:
LODVAP
PURPOSE: This subroutine allows the user to simulate the addition of liquid to a node. The network data is prepared as though no liquid exists at the node and is solved that way by the network execution subroutine. Then LQDVAP, which mast be called Variables 2, corrects the nodal solution in order to account for the liquid. If the nodal temperature exceeds the boiling point of the liquid, it is set to the boiling point.

The excess energy abcve that required to reach the boiling point is calculated and considered as absorbed thru vaporization. If the liquid is completely vaporized the subroutine deletes its operations. The method of solution holds very well for explicit solutions, but may introduce some error when large time steps are used with implicit solutions.
RESTRICTIONS: This subroutine must be called Variables 2.
CALITNG SEOUENCE: LQDVAP(T,C,A(IC))
where T is the temperature location of the node.
C is the capacitance location of the node.
$A+1$ contains the initial liquid weight.
2 contains the liquid specific heat.
3 contains the liquid vaporization temperature. 4 contains the liquid heat of vaporization. 5 receives the liquid vaporization rate (weight/time) 6 receives the liquid vaporization total (total weight) 7 contains the liquid initial temperature.

SLBROUTINE NAME:

BIVLV

PURPOSE: This subroutine allows the user to sperify the percentage flow rates through two parallel tubes with common end points. One tube must consist of a single flow conductor (GI) while the other tube may consist of one or more sequential flow conductors ($G 2(I), I=1, N$). The ratio of rlow through Gl divided by the total flow may be calculated in any desired sanner and must be supplied as the argument W. The conductor values of either one tube or the other are reduced in order to achieve the desired percentage flow rates irregardless of the pressure drop.

PESTAICTIONS: N must be an integer. G2 must address the first of the sequential conductors in that tube.

CALITHG SEOUENCE: BIVLV(N,W,G1,G2(DV))

SECTION VII

ERROR MESSAGES

Due to the variety of subroutines available and the variable number of arguments which some of them have，no check is made to determine if a subrcutine has the correct number of arguments．An incorrect number of arguments on a subroutine call will generally cause job termination im－ mediately after successful compilation，usually without any error message． If the above occurs，the user should closely check the number of arguments for his subroutine calls．

Numerous error messages can be output by the preprocessor．These error messages are listed below and grouped according to various pre－ processor functions．All error messages are preceeded by three asterisks which have been deleted below．Self－explanatory messages are not enlarged upon．

1．Processing Data Blocks

AN IMBEDDED Trini has been ENCquNTERED IN THE LAST LINE．
INTEGER FIELD EXCEEDS 10.
REAL NUMBER FIELD EXCEEDS 20.
ALPHAMERIC FIELD EXCEEDS 6.
MULTIPLE DECIMAL PめINTS HAVE BEEN ENC $\not \subset N T E R E D$.

C¢NDUCTøRS MUST BE ØRDERED－REGULAR，RADIATIめN．
NøDE NUMBER，XXXXX，IS THF DUPLIC4TM \varnothing THE XXXXXTH NØDE．
CøNDUCTø月 NUMBER，XXXXX，IS THE DUPLICATE $\varnothing \mathrm{F}$ THE XXXXXXTH CめNDUCTø／R．
CØNSTANT NUMBER，XXXXXX；IS THE DUPLICATE øF THE XXXXXTH CめNSTANT．
ARRAY NUMBER，XXXXX，SS THE DUPLICATE QF THE XXXXXXH ARRAY．
FIXED CøASTANT NAME IS NめT IN LIST．

2．Forming Pseudo Compute Sequence
NめDE，$X X X X X$, HAS N \varnothing MATCH $\mathbb{I N}$ THE NA－NB PAIRS．
$A D J \varnothing I N I N G$ N $\varnothing D E, X X X X X, \not \subset F$ NA－NB PAIR HAS Nф MATCH IN THE N $\varnothing D A L$ BL $\varnothing C K$.
3．Processing Program Blocks
 FNCDUNTERED．

VARIABLE DESIGNAT $\not \subset$ ，AAAAA，N $\not \subset T$ DEFINED F $\not \subset R$ GENERAL PR $\not \subset B L E M$.
Explanation：Some alpha character other than K or A has been used to reference a data block．In a thermal problem a designator other than G, K ，or A is assumed to be referencing the nodal block．

MISSTNG NØDE NUMBER，XXXXX．
MISSING C $\not \mathrm{ANDUCT} \mathrm{\not} \mathrm{\subset R}$ NUMBER，XXXXX．
MISSING OANSTANT NUMBER，XXXXX．
MISSING ARRAY NUMBER，XXXXX．
FIXED CØNSTANT NAME，AAAAA，NØT IN LIST．
NUNBER $\varnothing \mathrm{F}$ SUBR $\neq \mathrm{UTINES}$ REQUESTIDD EXCEEDS 75.
Explanation：More than 75 unique subroutines have been called．
4．Processing Parameter Changes
The first inve parameter change error messages are prefaced with the words：PARAMETER CHANGE ERRgR．

NØDE NUMBER，XXXXX，WAS NØT DEFTNED IN THE ØRIGINAL PRØBIEM． CONDUCT¢R NUMBER，XXXXX，WAS NめT DEFINED IN THE $\not \subset R I G I N A L ~ P R \not \subset B L E M$. CØNSTANT NUMBER，XXXXX，WAS N申T DEPINED IN THE $\varnothing R I G I N A L ~ P R \not \subset B L E M$. ARRAY NOMBER，XXOXX，WAS NФT DEFINED IN THE $\not \subset R I G I N A L ~ F R \varnothing B L E M . ~$

CONSTANTS BIdCK WAS EMPIT IN THE（RIGINAL PROBLEM．
ARRAY BJdCK WAS EXPIY IN THE ¢RIGINAL PR度ELEM．
5. Terminations Due to Errors (nc preceeding asterisks) THE AB \varnothing VE PARAMETER CHANGE WILL N $\not \subset T$ BE EXECUTED.

SECTION VIII

CINDA-3G OPERATING SYSTEM DESCRIPTION

The increased rate of change in machine characteristics of digital computers requires a corresponding change in the design of large, flexible programs. The cost of conversion of machine dependent programs exceeds their worth in many cases. The Fortran V ver sion of CINDA-3G is an attempt to minimize conversion efforts to succeeding machine generations by providing primarily Fortran coded routines capable of linking the engineering problem with the Fortran compiler. In general, the effectiveness of this method is limited only by the capability of the operating system to allow automatic selective composit on of a program from a large file of subprograms. The functions performed by the UNIVAC Fortran V compiler, allocator, and CUR facility provides an efficient, flexible method of program maintenance and execution.
I. The Fortran V version of CINDA-3G exists logically as a pre-processor, processor, and library. The operational continuity of these portions is made possible by the UNIVAC 1108 software.
A. The function of the pre-processor is to operate on a user supplied problem and produce the following:

1. Processor Main Program

This small routine acts primarily as a communication; link in providing addressing relationships between the operational user program and user data.

2. User Progran

These Fortran source programs are operational equivalents of the users Execution, Variables 1 and 2, and Output Calls blocks.

3. User Data

Binary data generated consists of definitions of parameters referenced in the various user data blocks and their corresponding values.

The premprocessor and appropriate use of the UNIVAC 1108 system control cards allows construction of the above from tape when the RECAL option is utilized.
B. The processor performs reading of the user data values prepared previously and calls the user program (i.e. Execution Block).
C. The CINDA-3G library contains a large number of various types of subprograms to accomplish most user requirements. UNIVAC software provides simple, flexible methods for the maintenance of this library. In addition, it is not necessary that a subroutine be updated to the library prior to availability in the user problem.
II. Preprccessor
A. Operation of the pre-processing phase. The main program (PREPRф) accomplishes the initialization of - data values and tape units and defines the order of processing which is carried out by seven overlay links:

1. If the problem being processed is a RECALL problem, SPLIT is called to read the recalled problem data and number definitions from the input tape and write these on the appropriate work tepes. SPLIT calls SKIP if the input tape is not positioned at the problem being recalled. (Section II. C.)
2. C $C D E F D$ reads the title block and the block title cards. DATARD reads the free-form data cards in the 4 (or 2, if General Problem) data blocis and any parameter change data. Each card is read, a format constructed for it, and then re-read. The data from each block is written on the data tape as one record. The number definitions of the data and the NA-NB pairs are written on work tapes.
3. PSEUD ϕ reads the node number definitions and NA-NB pairs from work tape. The pseudo compute sequence (Long or short) is const.ructed, packed by PACK43 (Slueth), and flagged. by $\emptyset \mathrm{RMiN}$ (Slueth), and written on the data tape, (Section II. B.)
4. GENLNK constructs the main program of the processor including CDMdN and DIMENSI期 information. On the UNIVAC 1108, routines which are to be compiled from tape must have a particular format. BLKCRD, STFFB, and WRTBLK (Slueth) generate records in this format. (Section II. D.)
5. PRESUB reads the title cards of the four program blocks and initiates the construction of each new subroutine. CINDA4 converts the CINDA "calls" in the program blocks into Fortran subroutine calls. Data referenced by input number definition is changed to refer to its relative location in C \varnothing MQ i I data arrays.
6. INITAL combines the original set of data and the initial parameter changes and writes the updated set of data on the data tape.
7. FINAL converts final parameter change data (number definitions and values) to relative array locations and values and writes number-value records on the data tape.
B. Construction of the Pseudo Compute Sequence

The pseudo compute sequence is a string of paired integers,
the first consisting of a sign and 13 bits, the second of a sign and 12 bits. Four of these 27 bit composite words are packed into 3 machine (36 bits) words by PACKL3.

The formation of the string takes place in PSUED \varnothing according to the following rules:
N_{i} are the diffusion and arithmetic mean node number definitions input in the BCD 3NØDE DATA block. $U T_{n b j}$ is the relative location of node number $N B_{j} . \quad N A_{j}-N B_{j}$ are the node pairs joined by conductors input in the BCD ЗCøNDUCTøR DATA block. m is the conductor number of the $N A_{j}-N_{j}$ under consideration. $L_{K N}$ is the relative location of conductor number m. The occurrence of NA_{j} and NB_{j} may be reversed throughout.

1. Short
a. $N_{i} \in$ diffusion nodes, and $\mathrm{N}_{\mathrm{i}}=\mathrm{NA}_{\mathrm{j}}$
(1) if $\mathrm{NB}_{j}>0$, and $\mathrm{NS}_{j} \boldsymbol{\epsilon}$ diffusion nodes $\rightarrow \mathrm{IKN}, \mathrm{LT}_{\mathrm{NB}_{j}}$, and
$\mathrm{NB}_{j}=-\left|\mathrm{NB}_{j}\right|$
(2) if $\mathrm{NB}_{\mathrm{j}}<0$, or
NB_{j} not ϵ diffusion nodes
$\rightarrow \mathrm{LKN}_{\mathrm{m}},-\mathrm{LT}_{\mathrm{NB}_{j}}$
b. $N_{i} \in$ arithmetic mean nodes, and
$\mathrm{N}_{\mathrm{i}}=\mathrm{NA}_{\mathrm{j}}$
(1) if $\mathrm{NB}_{j}>0$; and
$\mathrm{NB}_{j} \boldsymbol{\epsilon}$ diffusion nodes
$\rightarrow \mathrm{LKN}_{\mathrm{m}}, \mathrm{LT}_{\mathrm{NB}_{j}}$, and
$\mathrm{NB}_{j}=\left|\mathrm{NB}_{\mathrm{j}}\right|$
(2) if NB_{j} not \in diffusion nodes
$\rightarrow \mathrm{LKN}_{\mathrm{m}}, \mathrm{LT}_{\mathrm{NB}_{\mathrm{j}}}$
2. Long

Same as short, except the NB_{j} is not set negative in any case.
C. Store and Recall Options

The purpose of the store and recall options is to provide the user with the means to interrupt his program at any point, store the current data values, and continue processing. The tapes saved from the above run can then be used in conjunction with a RECALL card and a BCD 3INITIAL PARAMETERS data deck to make necessary data changes and restart the saved problem at point of the interrupt.

Fortran logical tapes 22 and 13 are saved when running a store problem option; they are mounted on 21 and 13 when running the recall option.

The data tape 21 contains a six character identification, specified in the users call to STDFTP, the problem type (GENERAL or THERMAL), the data number definitions from LUTI, and the data values from core.

The progrem tape, LBLP, contains the Fortran routines: LINKO, EXECTN, VARBEI, VAREL2, and фUTCAL.
D. Format of Subroutines to be Compiled from Tape. Routines must be written on tape (a non-Fortran write routine must be used to omit the Fortran control word on each record) in 507 word blocks with a maximum of 3614 -word card images pes block. Each block contains three signal words, for example,

Word \#
1
2

3-16
17-30
507

1
2
507

Bl.ock 1
Subroutine Name
Integer (Fortran) number of card images in block
lst card image
2nd card image
etc.
to (denotes more blocks of same subroutine to follow)
Block 2
0 (denotes continuation of above subroutine)
same as block 1
card images
-0 (7777777777778) (denotes last block of subroutine)

NOTE: Only the last block of a subroutine may be a short block (less than 36 card images) in which case no fill is needed.

SAMPLE PROBLRM 1A

A perfectily insulated one dimensional bar has a constant teating rate applied to one end. Obtain the ten minute transient temperature response, at half minute intervals, of the bar ends and at points $1 / 4,1 / 2$ and $3 / 4$ of the way along the bar. The bar is initially at $80^{\circ} \mathrm{F}$ and receives a constant heating rate of 3.0 BIU's/min. The length of the bar is four inches and it has a cross-sectional area of one square inch. It has the following material properties:

$$
\begin{aligned}
& \text { density }=172.8 \mathrm{lbs} . / \mathrm{ft}^{3} \\
& \text { specific heat }=0.35 \mathrm{BTU} / \mathrm{lb} \circ \mathrm{~F} \\
& \text { thermal conductivity }=0.2 \mathrm{BTU} / \mathrm{in} \text { min }{ }^{\circ} \mathrm{F}
\end{aligned}
$$

Below is a schematic of the physical problem with the nodes appropriately placed and the dashed lines indicating the lumping of the system for capacitance purposes.

The network representation is as foliows:

Caracitors receive the ssme number as the temperatures but with a C prefix. From the above information, we immediately calculate:

$$
\begin{aligned}
& \mathrm{C} 2=\mathrm{C3}=\mathrm{CL}=\mathrm{P} \cdot \mathrm{~V} \cdot \mathrm{Cp}=0.035 \mathrm{ETV} /{ }^{\circ} \mathrm{F} \\
& \mathrm{Cl}=\mathrm{C} 5=\mathrm{C} 2 / 2.0=0.0175 \mathrm{BTU} /{ }^{\circ} \mathrm{F} \\
& \mathrm{Gl}=\mathrm{G} 2=\mathrm{G} 3=\mathrm{G} / 4 \mathrm{k} * \mathrm{Ac} / \mathrm{L}=0.2 \mathrm{BTU} / \mathrm{min}^{\circ} \mathrm{F}
\end{aligned}
$$

where $V=\| * A c$, length times cross-sectional area.
To apply explicit forward differencing to this problem, we mast utilize the CNFRiND execution subroutine which reopuires the short pseudo-compute sequence. Hence, the title block is as follows:

Col 8
BC: 3THERMAL SPCS
BCD 2SAMPLE PRథELFM NØ.1A
END
The nodal block is next and requires the node number, initial tsmperature, and capacitance of each node be listed.

Col 8
BCD 3NØDE DATA
1,80.,.0175, 5,80.,. 0175
GEN 2,3,1,80.,.035,1.,1.,1. END

The conauctor block requires that each conductor number be listed with the node numbers at either and and the conductor value.

Col 8
BCD 300 NDUCT $\neq \mathrm{R}$ DATA
GEN 1,4,1,1,1,2,1,.2,1.,1.,1.
END
The only control constants required for CNTWD are as follows:
Col 8
BCD 3CONSTANTS DATA TIMEND, 10. , , UTPUT : . \therefore, CSGFAC, 2 .
END
There is no array data and only one execution call, hence:
Col 1 Col 8
BCD 3ARRAY DATA
END
BCD 3EXECUTI $/ \mathrm{N}$
F DIMENSION X(100)
F $\quad \mathrm{NDIM}=.100$
$F \quad \mathrm{NH}=0$
SNFRND
END
There are no sacond variables operations but we must apply the heating rate in the first variables.

Col 8
BCD 3VARIABLES 1 STFSEP (3.,Q1)
END
BCD 3VARIABLES 2
END
Our actual node numbers will have a one to one correspondence with the relative node numbers so the following completes the data imput.

Col 8
BCD 30UTPUT CAIIS
PRNINP
END
BCD 3END 中F DATA

The above problem data deck pr:cessed by the CIMDA-3G program on the Univac 1108 as a standard mun produces the following outplit:

[^0]

$6 \quad A 1 \quad 604043$
REAL TITE CLOCN LIGEKROUATEU AT 10:25:57

SAMPLE PROBLEM 1B

Sample problem lA was linear and can be rigorously solved by means of the Laplace transform. However, the introduction of nonlinearities makes rigorous solutions virtually impossible and makes the use of finite difference techniques mandatory. To demonstrate, apply the following nonlinearities to sample problem 1 A and obtain the solution.

1. Both ends of the bar are uninsulated and allowed to radiate to absolute zero. The Stephan Boltzman constant is $\sigma=1.991 E-13 \mathrm{BTV} / \mathrm{min} \mathrm{in}^{2}{ }^{\circ} \mathrm{R}^{4}$ and the emissivity varies linearly with temperature as follows:

$$
\begin{aligned}
& \epsilon=0.4 \text { at }-1000^{\circ} \mathrm{F} \\
& \epsilon=0.8 \text { at } 3000^{\circ} \mathrm{F}
\end{aligned}
$$

2. The thermal conductivity of the bar varies with temperature as follows:

$$
\begin{aligned}
& \mathrm{k}=0.15 \text { at }-100^{\circ} \mathrm{F} \sim\left(\mathrm{BTU} / \mathrm{in} \min { }^{\circ} \mathrm{F}\right) \\
& \mathrm{k}=0.25 \text { at } 1000^{\circ} \mathrm{F} \\
& \mathrm{k}=0.40 \text { at } 2000^{\circ} \mathrm{F} \\
& \mathrm{k}=0.60 \text { at } 300 . \mathrm{F}
\end{aligned}
$$

3. The density remains unchanged but the specific heat varies with temperature as follows:

$$
\begin{aligned}
\mathrm{Cp} & =0.3 \text { at }=100^{\circ} \cdot \mathrm{F} \sim(\mathrm{BTJ} / \mathrm{lb} \cdot \mathrm{~F}) \\
& =0.39 \text { at } 100^{\circ} \mathrm{F} \\
& =0.49 \text { at } 2000^{\circ} \mathrm{F} \\
& =0.65 \text { at } 300^{\circ} \mathrm{F}
\end{aligned}
$$

4. The heating rate is a function of time as follows:

$$
\begin{aligned}
& \mathrm{q}=3.0 \text { at } 0 \min (\mathrm{BTU} / \mathrm{min}) \\
& \mathrm{q}=4.0 \text { at } 3 . \mathrm{min} \\
& \mathrm{q}=4.0 \text { at } 7 . \min \\
& \mathrm{q}=3.0 \text { at } 10 . \mathrm{min}
\end{aligned}
$$

In addition, obtain the rate of heat loss and integral of the radiation transfer from the unheated end of the bar. The network representation of this problem differs only slightly from l.A.

Now however, the capacitances are a function of temperature. We therefore require multiplying factors such that:

$$
\begin{aligned}
\mathrm{C} & =\rho \mathrm{VCp}(\mathrm{~T}), \mathrm{MF}=\rho \mathrm{V} \\
\mathrm{MF} & =0.1 \text { for capacitors } 2,3 \text { and } 4 \\
\mathrm{MF} & =0.05 \text { for capacitors } 1 \text { and } 5
\end{aligned}
$$

The conductors are now:

$$
\begin{aligned}
G & =k(\mathrm{Tm}) \mathrm{Ac} / \mathrm{l}, \mathrm{MF}=\mathrm{AC} / \ell, \mathrm{TM} \text { is the mean of the end } \mathrm{T} \text { 's } \\
\mathrm{MF} & =1.0 \text { for conductors } 1,2,3 \text { and } 4
\end{aligned}
$$

A raciation conductor requires the input value $\sigma \in F A$, however $F A=1.0$, hence

$$
\text { Grad }=r \in(T), M F=1.991 \mathrm{BTU} / \mathrm{min}{ }^{\circ} \mathrm{F} \text {. Also, } q=q(T)
$$

The capacitors and conductors will be specified with CGS and CGD calls, the problem data deck $\mathrm{m} \boldsymbol{\sim}$? be constructed as follows:

Col 1

8

BCD 3THERMAL SPCS
BCD 9SAMPLE PRøBLEM 1B
EISD
BCD 3NDDE DATA
CGS 1,80., A3, . 05,2,80., A3, .1,3,80. , 1^{-}, . 1
CGS 4,80.,A3,.1,5,80.,A3,. 05 $-10,-460$. ,0
END
BCD 3C $\neq \mathrm{NDUCT}$ ØR DATA
CGS 1,1,2,A2,1.,2,2,3,A2,1.,3,3,4,A2,1.,4,4,5,A2,1.
CGS -11,1,10,A1,-1.991E-13,-12,5,10,A1,-1.991E-13
END
BCD 3CøNSTANTS DATA
TIMEND,10., OUTPUT,15,CSGFAC ,2.,4,0,5,0
END
BCD 3ARRAY DATA
$1,-100 ., .4,300 ., 0.8$, END $\$$ EPSIL $\neq N$ VS T
2,-100.,.15,100.,.25,200.,.4,300.,.6,END \$ K VS T
$3,-100 ., .3,100 ., .39,200 ., 49,300 ., 65$, END $\$$ CP VS T
4,0.,3.,3.,4.,7.,4.,10.,3.,END \$ Q VS TTME
-5,QRATE,QT $\phi T A L, E N D \quad \$$ A LABEL ARRAY
END
BCD 3 EXECUTI $\neq \mathrm{N}$
F DIMENSION X(100)
F \quad NDIM $=100$
F $\quad \mathrm{NTH}=0$
CNFRWD
END
BCD 3VARIABIES 1 DIDEGI (TIMEM,AL,Q1) \$APPLY HEATING RATE
END
BCD 3VARIABLES 2
RDTNQS (T10,T5,G12,K4) \$ QINTEG(K4,DTIMEU,K5) \$INTEGRATE SAME
END
BCD 3øUTPUZ CALLS
PRNTMP
PRINTL ($\mathrm{A} 5, \mathrm{~K}_{4}, \mathrm{~K} 5$)
END
BCD 3END ØF DATA
The above problem data deck processed by the Univac 1108 version of CINDA-3G produces the following output.
ILS دITLERPAL SPCS
ULS YSMMPLL HKUELEM 1 is
(G) دfolut vala

$W T H=0$
EN: GNFREL

Eisu

"LELL
VATCIS.
HKII.JL

1) *DIAGINOSIIC: MESSA(st: (S)

0 \#DIAGNOSTIC. MESCA(SF(G)
n *DIAGNOSTIC* MEscage (S)
0 *DIAGNOSTIC* MESQAGE(S)

LINU UF UNIVAC 11 UB FORIIRAI v CUMPILATIOI.
EIVL OF UNIVAC 1108 FOKIRAN V CUARILATIUI..
FOKOK VAKILI
IVIVAC $110 \pm$ FOKTRAN V LEVEL 2200 00UG FGODA
HIS COMPILATION WAS UUIVE UN 11 DEL E7 AT 09:11:59
ENU UF UNIVAC 1108 FORTKAIV \vee CUMPILATIOIV.
NSVAC 11UU FURTRAN V LEVEL 2200 DUU9 FGU0A
ENU UF UNIVAC 1108 FORTRAN V CUMFILATION.
UNIVAC 11U8 FURTKAN V LEVEL 22000009 FGU0A
THIS COMPILATION AAS DONE ON 11 OEC 67 AT 09:12:01
END UF UNIVAC 1108 FORTRAN V COMHILATIOH.

E
16.3772163777
100000102741
cure LIMIIS

wieks/cuue
WIERS /CUUE
0
1
$10001-100001$
0
0 < 10000く-100004

iverkes COUE

 $1014134-014500$
LXECTN/T =
100215100210
$1 \quad 414531-614532$

HOUIS / CODE
$\begin{array}{lll} & 10030 / 200302 \\ 1 & 015075-016701 \\ 2 & 100334-1003 / 4\end{array}$

NIOINS/COUE
$210755-015$

notins/cuue

0

ДINPUTT／CUUE
LINPUTT／CULE
U $101445-1 \cup 15 U 2$
$1 \quad U \angle C U 00-6<25 \angle O$
INF IINPS／CUUE
U $1015 \cup S-1 U 15 \cup 0$
1
1

intuFFS／LUUE
1 UZJUSくーU
1 ＜101コントー1U2510

LIMENS／＊＊＊＊＊＊＊
U $10252<-1$ U2S 3
FIXLOIV／＊＊＊＊＊＊＊
$U 10<534-102615$

u $10206 U^{-142601}$
YCS／＊＊＊＊＊

tivu ur AlluLaidon 1103 UU33
צ Lucailuns avallaste

PAGF
（FORTRAII V VFRGION）
Whrsitk \＆HrkUVEL JLMERICAI DIFFERENCING ANALY／FR－COON4S
دAMPLL Phublaim 10

GKATL
2．6764＜－02 CSGiAIAI
$2.384312+02$
$-4.000 L 00+02$
$1 .<6910-01$
1． $376<$ J－0 CSGiAINI
$2.465667+02$
$-4.000000+02$
$1.44900-01$

え
くいさUSZUUがて
$00000^{\circ} 0$
द0ty18688＊ 2
5

[^0]: HOLE: The only option to the BCD 3BND TF DATA card is a parameter change. A new job would require another set of control cards.

