
A 1 1 1 0 (7 4 b 4 3 4

Mii
REFERENCE

PUBLICATIONS

NISTIR 7049

CONTAM 2.1 Supplemental User Guide and

Program Documentation

George N. Walton

W. Stuart Dols

Q 0
too

.U,5<c>

470 V<?

3l003

NIST
National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

V

NISTIR 7049

CONTAM 2.1 Supplemental User Guide and

Program Documentation

George N. Walton

W. Stuart Dols

Building Environment Division

Building and Fire Research Laboratory

National Institute ofStandards and Technology >

Gaithersburg, MD 20899-8633

Prepared for:

Naval Surface Warfare Center

Dahlgren, VA

October 23, 2003

U.S. Department of Commerce

Donald L. Evans, Secretary

Technology Administration

Phillip J. Bond, Undersecretary of Commerce for Technology

National Institute of Standards and Technology

Arden L. Bement, Jr., Director

Abstract
CONTAM is a general purpose, multi-zone (nodal) airflow and contaminant transport analysis

tool that can be used to determine inter-zone pressure differences, airflow rates and contaminant

transport in complex building structures. This tool was developed by the Building and Fire

Research Laboratory of the National Institute of Standards and Technology (NIST) for the

analysis of building ventilation systems and has evolved and adapted to accommodate a wide

range of building engineering disciplines from indoor air quality analysis to smoke management

system design. This report serves two purposes: as a supplement to the CONTAMW 2.0 User

Manual with explanations of the most recent enhancements to the program and to document the

program. The documentation addresses both the graphical user interface (referred to herein as

ContamW) and the numerical solver (referred to herein as ContamX) of version 2.1 of the

program, collectively referred to as CONTAM.

Key Words: airflow analysis; atmospheric contaminant transport; building technology;

computer program; contaminant analysis; design tool; indoor air quality; multizone analysis

Software Disclaimer

This software was developed at the National Institute of Standards and Technology by

employees of the Federal Government in the course of their official duties. Pursuant to title 17

Section 105 of the United States Code this software is not subject to copyright protection and is

in the public domain. CONTAM is an experimental system. NIST assumes no responsibility

whatsoever for its use by other parties, and makes no guarantees, expressed or implied, about its

quality, reliability, or any other characteristic. We would appreciate acknowledgement if the

software is used.

This software can be redistributed and/or modified freely provided that any derivative works

bear some notice that they are derived from it, and any modified versions bear some notice that

they have been modified.

Certain trade names or company products are mentioned in the text to specify adequately the

experimental procedure and equipment used. In no case does such identification imply

recommendation or endorsement by the National Institute of Standards and Technology, nor

does it imply that the equipment is the best available for the purpose.

Navigating This Document
This document is made up of three separate parts: Part 1 is relevant to the typical users of the

program and Parts 2 and 3 are provided for those interested in understanding the inner-workings

of the solver and graphical user interface (GUI) respectively. Part 2 also contains information

related to input and output file formats that may prove useful to the more advanced users of the

program. If you are viewing this document within a pdf-viewer then you can use the Bookmarks

to navigate to various sections of the document. You can also use hyperlinks that appear

throughout the document that have been defined to provide easy access to detailed information,

e.g. function definitions in the ContamX program structure. After executing a link you may
return to the spot where the link was called by clicking on the left arrow in the toolbar above the

document, e.g., “Go to previous view’' button in the Adobe Acrobat Reader as illustrated below.

IV

Table of Contents
Abstract iii

Software Disclaimer iv

Navigating This Document iv

PART 1 - CONTAM 2.1 Supplemental User Manual 1

1 . 1 Introduction 1

1 .2 Working with WPC Files 1

1.2.1 WPC Usage Parameters 2

1.2.2 Envelope Opening Locations 4

1.2.3 Running Simulations using a WPC File 4

1.3 Control Elements 5

1.4 Particulate Contaminants 7

1.5 Calculation of Total Mass Released from Sources 7

PART 2 - ContamX Program Documentation 8

2. 1 Introduction 8

2.2 Development Environment 8

2.3 ContamX Program Structure 9

2.3.1 Overall Program Structure 9

2.3.2 ContamX Solver Functions 10

2.3.3 Utility Functions 20

2.3.4 Sparse Matrix Data Structure 23

2.3.5 Solution of the Species Differential Equations: 24

2.4 CONTAM Input and Output Files 26

2.4.1 Project File (.PRJ) 26

2.4.2 Weather File (.WTH) 61

2.4.3 Contaminant File (.CTM) 63

2.4.4 Restart File (.RST) 64

2.4.5 Continuous Values File (.CVF) 65

2.4.6 Discrete Values File (.DVF) 66

2.4.7 Simulation Results File (.SIM) 67

2.4.8 Controls Log File (.LOG) 69

2.4.9 Wind Pressure and Contaminant File (.WPC) 70

2.4.10 Path Location Data File (.PLD) 71

2.4. 1 1 ContamX Log File (CONTAMX2.LOG) 74

2.4.12 ContainW Configuration File (CONTAM.CFG) 77

2.5 Data Structures 78

PART 3 - ContamW Program Documentation 79

3.1 Introduction 79

3.2 Development Environment 79

3 . 3 Program Structure 79

3.3.1 Main Program and Message Loop 80

3.3.2 Window Procedures 80

3.4 Program Data 80

3.4. 1 SketchPad Data 80

3.4.2 Building Organization 82

3.4.3 Building Component and Element Data 82

3.5 Program Logic 84

3.5. 1 Message (Event) Handlers 84

3.5.2 Saving and Retrieving Project Files 84

3.5.3 SketchPad Drawing 84

3.5.4 Creating and Editing Building Components 88

3.5.5 Running Simulations 88

3.5.6 Viewing Simulation Results 88

Appendix 3A 92

References 96

Acknowledgments 97

v

Part 1 - Introduction

PART 1 - CONTAM 2.1 Supplemental User Manual

1.1 Introduction

This part of the document serves as a user manual for the enhancements embodied in CONTAM
2.1. It is to be used as a supplement to the CONTAMW 2.0 User Manual [2]. This supplemental

information is also incorporated into ContamW’s online help system

CONTAM 2.1 includes the implementation of the following enhancements:

• Windpressure and contaminantfields - The ability to incorporate data from exterior airflow

and pollutant transport models, e.g., plume and puff dispersion models, to utilize detailed

ambient wind pressure and contaminant data fields to provide boundary conditions on the

airflow paths of the envelope of built structures

• Control elements - New control elements to simulate time delays associated with spin-

up/down of fans and the opening/closing of dampers and to perform integration, peak

determination of sensor output over time, maximum, minimum and exponential operations

• Particle analysis - Modified contaminant properties to simplify the analysis of airborne

particles

• Mass release calculation - The calculation of total mass released by contaminant sources

during a simulation

1.2 Working with WPC Files

A new method to account for the variation of external wind pressures and outdoor contaminant

concentrations over the building envelope has been implemented in CONTAM. This method

addresses the need to allow for the use of general, spatially varying wind pressure and ambient

contaminant concentrations such as those from wind tunnel experiments or atmospheric models,

e.g., plume or puff dispersion simulation tools. This method involves the implementation of a

Wind Pressure and Contaminants file (WPC file). This file provides exterior pressure and/or

contaminant concentrations time histories for every flow path that connects to the ambient zone

including duct terminals and outdoor air intakes of CONTAM's simple air handling systems.

The WPC files are created externally to CONTAM, however their creation can be assisted by

ContamW that creates a Path Location Data (PLD) file listing all the airflow path locations that

are connected to the ambient zone. The following figure illustrates the interaction between

CONTAM and the WPC file. The dashed lines in the figure represent optional components. The

WPC file is an ASCII file that could be created using conventional means, e.g., spreadsheet

converted to text. Once could also develop a WPC File Converter program to create the files

from External Wind Pressure and Contaminant data files created by a separate tool, e.g., exterior

CFD program. A converter could then work with the PLD file to create a WPC file specific to

the building in question, i.e., the PRJ file. ContamW provides a means to activate a user-

selectable converter. The details of the WPC and PLD file formats are presented in the sections

titled Wind Pressure and Contaminant File (.WPC) , and Path Location Data File (.PLD)

respectively of Part 2 of this document. CONTAM does not include either an EWC file creation

tool or an EWC-to-WPC converter tool.

1

Part 1 - Working with WPC Files

i

t
i

! EWC File 1

C __ ^ ^

WPC File Implementation Schematic

Steps to implement WPC files:

• Specify WPC file usage parameters (Weather^Use WPC File...)

o Select type of data the WPCfile includes - wind pressures and/or contaminants

o Select existing WPCfile

Or

o Select EWC File Converter program (optional and user-provided)

Specify converter parameters: equivalent origin, location tolerance, date and time info

Select EWC input file to EWC File Converter program

Specify name of WPC file to create

• Enter Coordinate Information for each external flow path

o Airflow paths

o Duct terminals

o Outdoor air intakes of simple air handling systems

• Run Simulation or Create ContamX Input File for batch processing. Either option will

activate the WPC file implementation routines (as needed) that will create a PLD file, call the

converter program, compare WPC and PLD files and notify user of discrepancies between

them.

1.2.1 WPC Usage Parameters

The following parameters are required to specify the usage of a WPC file when performing a

simulation. Access these parameters via the Weather—»WPC File... menu item. The values in

the group labeled WPC File are required, while the others are only necessary if implementing an

EWC File Converter program.

j WPC File

Use this group of data to specify the .WPC file to use when performing a simulation and the type

of data contained within the file. NOTE: Check at least one ofthe two check boxes in order to

Part 1 - Working with WPC Files

activate the Coordinate Information parameters on the Airflow Path, Duct Terminal, and Simple

Air Handling System property sheets.

Wind Pressures: Check this box to use wind pressures from a WPC File.

Contaminant Concentrations: Check this box to use contaminant concentrations from a

WPC File. This box will only be activated if you have already defined contaminants within

the current project.

Name: This is the name of the WPC File to use during the simulation. You can either use the

Browse... button to select an existing file, or enter the name you would like the EWC File

Converter to give to a new file.

Description: This will display the description line of the WPC File if it exists, or you can

enter a description for a new WPC File.

External Wind and Contaminant Data

The External Wind Pressure and Contaminant file contains the external contaminant

concentrations and pressures that the EWC File Converter(which must be developedfor your

specific application) will convert into a WPC File.

File Name: Use the Browse... button to select an existing EWC File.

Program to Create WPC File: Use the Browse... button to select the EWC File Converter

program to use.

Coordinate Transformation Data

These parameters can be used by an EWC File Converter to establish the relationship

between the coordinates of the External Wind Pressure and Contaminant file and the

CONTAM project file. No transformation is required if the coordinate systems for the PRJ

and EWC tiles are consistent. These values are stored in the PLD file by ContamW.

Origin (X, Y and Z): The location of the origin of the CONTAM PRJ file with respect to the

origin of the External Wind Pressure and Contaminant file.

Rotation Data: The rotation of the x and y axes of the EWC coordinate system about the z

axis to align with the x and y axes of the CONTAM coordinate system. Counter-clockwise is

considered the positive direction.

Conversion Tolerance

These are the tolerances that an EWC File Converter might use to determine how closely

information in the EWC File and the PLD File must match in order to resolve contaminant

(species) and location data. These values are stored in the PLD file by ContamW.

Species: Species can be resolved by their molecular weight, i.e., the molecular weight of

each species defined in ContamW and the WPC file must not differ by more than this amount

to be considered the same species.

Location: Locations can be resolved by their distance as determined by an EWC File

Converter . e.g., distance to center of a grid cell. Units within the PLD File are in meters.

3

Part 1 - Working with WPC Files

Date and Time

These parameters can be used by an EWC File Converter to determine the date and time

values written to the WPC File for the convenience of working according to CONTAM's
schedules. These values are stored in the PLD file by ContamW.

Data Time Shift: The format for this value is hh:mm:ss. An EWC File Converter could add

this value to the EWC File time. For example an EWC File Converter could create a file that

begins at 00:00:00 and set the next time to be the Data Time Shift you enter here. The data

for these two times would be the initial values in the EWC File.

Start and End Date: The format for this value is mmmdd. For example, enter January 1 as

JanOl. An EWC File Converter could use this to output the date(s) to use when running

transient simulations.

1.2.2 Envelope Opening Locations

When using WPC Files you must enter the coordinates for each opening connected to the

ambient. CONTAMW now provides a means to do this for Airflow Paths , Duct Terminals , and

Outdoor Air Intakes ofSimple Air Handling Systems. This information is provided on the Wind

Pressure Property Pages of the Airflow Path Properties and Duct Junction Properties and on the

AHS Property Page of the Simple Air Handling System Properties input dialog boxes. The

location information will be used to create the PLD File which in turn is used to verify there is

matching information within the WPC File prior to performing simulations using the WPC File.

Even though every opening requires location data when simulating with WPC Files , they do not

necessarily have to be unique. They simply must match a location within the WPC File.

NOTE: Either the Wind Pressures or Contaminant Concentrations check boxes on the Wind

Pressure and Contaminants (WPC) File Parameters dialog box must be checked in order to

access the coordinate input fields of these property pages.

1.2.2. 1 Airflow Paths and Duct Terminals

Enter the X and Y coordinates and units for the selected airflow path or duct terminal. The Z
coordinate will be calculated by ContamW to be the Relative Elevation of the airflow path or

duct terminal plus the Elevation of the building level on which the path or terminal is located.

1.2.2.2 Outdoor Air Intakes of Simple Air Handling Systems

Enter the X, Y and Z coordinates and units for the outdoor air intake of the selected Simple AHS.

Enter the Z coordinate as the height of the midpoint of the outdoor air intake with respect to the

building reference height.

1.2.3 Running Simulations using a WPC File

To run a simulation using a WPC file, you must have checked either the Wind Pressures or

Contaminant Concentrations check box on the Wind Pressure and Contaminant (WPC) File

Parameters dialog box. When you choose Run Simulation (or Create ContamX Input File) from

the Simulation menu, ContamW will perform a series of checks to make sure that all the path

locations have been defined and match those in the WPC file if it exists and that the species

4

Part 1 - Control Elements

match between the PRJ and the WPC files. It will call the EWC File Converter and create a WPC
file if an EWC file converter has been identified.

ContamW will provide error messages as needed and highlight paths on the SketchPad to reveal

those for which location data are not defined or the PLD and WPC coordinates do not match

within the specified tolerance. If there are errors with specific openings, you can take this

opportunity to correct them.

1.3 Control Elements

Several building control elements have been added to CONTAM. These elements are described

below.

Continuous Value File (CVF)

This control element allows you to implement general schedules by obtaining input values

from a file. This allows you to create schedules that are not restricted by the 12-day schedule

limit of CONTAM's week schedules. The file is referred to as a continuous value file. This

file is an ASCII file that you create according to the format specified in the Continuous Value

File (.CVF) section in Part 2 of this document. You can only use one CVF file per

simulation, and the file may contain multiple lists of values. Value lists are referenced by

Value name which are column headings in the file.

Value Name: Select the name of a set of values from the list of headings as they appear in

the CVF file.

File Name: This field simply displays the CVF file that contains the data that will be used by

the control node during simulation. You must use the Data—^Continuous Values File...

menu item to select the file you want to use prior to creating CVF control nodes.

Node Name: This is an optional name you can provide for this control node. This name can

be used to reference this node with a Phantom control node.

Discrete Value File (DVF)

This control element allows you to implement scheduled discrete events by obtaining event

times and values from a file. This allows you to create schedules that do not repeat according

to CONTAM's week schedules. The file is referred to as a discrete value file. This file is an

ASCII file that you create according to the format specified in the Discrete Value File (.DVF)

section. You can only use one DVF file per simulation, and the file may contain multiple lists

of events. Event lists are referenced by Value name which are column headings in the file.

Value Name: Select the name of a value from the list of headings as they appear in the .DVF
file.

File Name: This field simply displays the DVF file that contains the data you need. You

must use the Data-»Discrete Values File... menu item to select the file you want to use

prior to creating a DVF control node.

Node Name: This is an optional name you can provide for this control node. This name can

be used to reference this node with a Phantom control node.

Part 1 - Control Elements

Scheduled Delay

This control element provides the ability to simulate time delays associated with the ramping

up/down of system components changing between states, e.g., the spin down of a fan or the

opening/closing of a damper. The scheduled delay element allows you to define a schedule

according to which the change of state occurs. The output will change according to this

schedule when the input changes.

Node Name: This is an optional name you can provide for this control node. This name can

be used to reference this node with a Phantom control node.

Schedule - Signal Increasing: Select/enter a day schedule that characterizes the delay in an

increasing signal. The schedule must be trapezoidal beginning with a value of 0.0 at time

00:00:00 and increase to a value of 1.0 before 24:00:00. Only one increasing time period per

schedule will be allowed.

Schedule - Signal Decreasing: Select/enter a day schedule that characterizes the delay in a

decreasing signal. The schedule must be trapezoidal beginning with a value of 1.0 at time

00:00:00 and decrease to a value of 0.0 before 24:00:00. Only one decreasing time period per

schedule will be allowed.

Description: Enter an optional description for this control element.

Exponential Delay

This control element provides the ability to simulate time delays associated with the ramping

up/down of system components changing between states, e.g., the spin down of a fan or the

opening/closing of a damper. The exponential delay element allows you to define an

exponential delay based on a time constant.

Node Name: This is an optional name you can provide for this control node. This name can

be used to reference this node with a Phantom control node.

Time Constants

Increase: Enter the amount of time it should take for the output signal to exponentially

increase by (1 - l/e)% of the total change in the input signal when it rises from one state to

the next. The format is hh:mm:ss.

Decrease: Enter the amount of time it should take for the output signal to exponentially

decrease by (1
- l/e)% of the total change in the input signal when it falls from one state to

the next. The format is hh:mm:ss.

Description: Enter an optional description for this control element.

Maximum and Minimum

The output w ill be the maximum or minimum of all input signals to the control node each

time step. Once a node is defined to be of this type, up to three input signals can be drawn

directly into it. More signals can be cascaded through the use ofphantom control elements.

Node Name: This is an optional name you can provide for this control node. This name can

be used to reference this node with a Phantom control node.

Description: Enter an optional description for this control element.

6

Part 1 - Particulate Contaminants

Integrate over time

The output will be the integration over time of input signal 1 (horizontal) controlled by input

signal 2 (vertical). Integration occurs when input signal 2 > 0; there is no integration when
input signal 2 = 0; the integral is reinitialized to zero when input signal 2 < 0. A simple

trapezoidal integration method is used.

Running average

The output will be the average of the input signal integrated over the time span, Atint , set by

the user: out =
|

indt Atmt . At the start of simulation, when the simulated time is less

At,,

than the time span, the output will be the average of the input up to that time.

Node Name: This is an optional name you can provide for this control node. This name can

be used to reference this node with a Phantom control node.

Time Span: Enter the amount of time included in the running average, Atmt- The format is

hh:mm:ss.

Description: Enter an optional description for this control element.

1.4 Particulate Contaminants

The properties of species/contaminants have been enhanced to simplify the simulation of

particulate contaminants with CONTAM. Two properties have been added: mean diameter and

effective density’. Also, the units for concentration now include particle-related units. These units

include # per unit mass ofair and # per unit volume ofair. The mean diameter and effective

density are currently only utilized to convert contaminant concentrations between particle count

units and mass and volumetric units.

Mean Diameter: Enter the mean particle diameter for particulate species.

NOTE: This is not necessarily meant to be the aerodynamic diameter, and that the current

contaminant source models do not treat particles different from gaseous contaminants.

Effective Density: Enter a density that you want CONTAM to use as the effective density of a

species you want to consider to be a particulate species.

1.5 Calculation of Total Mass Released from Sources

The total amount of mass generated/removed by each source within a project is now calculated

and output to the CONTAMX2.CSM file located in the ContainW program directory. The

following shows a sample of the data output. The first two columns are the source/sink number

and the zone number for referencing back to ContamW.

Contaminant
s/s # zn #

1 1

2 1

3 1

source/ sink
generated
6 . 000e-004
6 . 000e-004
1 . 000e+000

summations

.

removed [kg]

0 . 000e+000
0 . 000e+000
0 . 000e+000

species
Cl

Cl

C2

7

Part 2- Introduction

PART 2 - ContamX Program Documentation

2.1 Introduction

This documentation is intended as an aid to understanding the ContamX 2.1 computer code and

is meant primarily to address the logical structure of the program. The numerical algorithms are

explained in the CONTAMW 2.0 User Manual [2].

The overall logical structure of the program is presented below in Section 2.3 Program Structure

Overview. This material is not necessary for the general user of the program, but is provided for

those interested in understanding or perhaps enhancing its capabilities. You can use the

hyperlinks to jump to detailed descriptions of the highlighted functions. After executing a link

you may return to the spot where the link was called by clicking on the left arrow in the toolbar

above the document. This process is designed to facilitate both the rapid review of program

structure and quick access to the details of the calculations. If working from a hard copy simply

keep in mind that functions are presented alphabetically. There are also many small functions

performing simple operations that are called from many places in the program - see Utility

Functions . A special method is used to store the data for the solution of the simultaneous

equations - see Sparse Matrix Data Structure . That is followed by a brief description of some of

the numerical methods - see Solution of the Species Differential Equations .

2.2 Development Environment

CONTAMX Version 2.1 was developed using Microsoft Visual C++ versions 6.0 and .NET. It is

basically a console application written in the C programming language. However, the program

does require Microsoft Windows in order to display simulation progress in a dialog box. Other

than that, it could be compiled in a non-Windows environment with minor modifications to the

source code.

Part 2 - ContamX Program Structure

2.3 ContamX Program Structure

This section presents the program structure of the solver, ContamX. Section 2.3.1 presents the

overall program structure, 2.3.2 presents the main solver functions in alphabetical order, 2.3.3

presents the utility functions used by the solver, 2.3.4 presents the sparse matrix data structure

and 2.3.5 presents the solution to the species differential equations.

2.3.1 Overall Program Structure

Program initialization [mostly from main(
)

in contamx. c]

Determine path to C0NTAMX2.EXE

Open CONTAMX2.LOG file for informative dumps

Determine path to project file - command line or interactive input

Determine if dialog box used

if so, open it and start ContamX thread,

otherwise, continue ContamX in DOS window

Set output mode (dialog box or DOS window) for error messages [from contamx()j

Data initialization [from contamx(
)
in contamx. c]

Read project file - see prj read()

Complete ContamX data structures - see sim data()

Create simulation arrays [from contamx(); see mat initO

Set up airflow matrices - see af mat set (

)

Set up non-trace mass matrices - see mf mat set(

)

Set up trace mass matrices - see mf mat sett

)

Report equation numbers to LOG file

Initialize simulation [from contamx(
)

in contamx. c]

Set start/end dates and times

Open/initialize weather file - see weather init{

)

Open/initialize contaminant file - see ambtctm init()

Initialize schedules and control values - see Ctrl sim()

Open simulation output files

Perform simulation [from contamx(
)
in contamx.c]

Initialize flow and mass fraction values

from restart file - resget

or by steady-state calculation - see sim lnit{

)

Perform transient or cyclic calculation - see sim loop(

)

Normal program termination [from contamx(
)
in contamx.c]

Report simulation performance to LOG file

De-allocate all earlier heap allocations - see mat term(

)

Perform memory checks

Close LOG file

Return to main(); return to operating system

9

Part 2 - ContamX Program Structure

2.3.2 ContamX Solver Functions

af_mat_alc(

)

[function infile matset.c]

Allocate remaining airflow solution arrays.

Determine number of non-zero coefficients in symmetric matrix - in ija_minset(

)

Allocate and set the ija index vector - in ija_minset(

)

Allocate the sa, b, and x coefficients vectors

For symmetric skyline solution method allocate remaining arrays - in sky_alc(

)

For conjugate gradient method allocate p, pp, r, rr, z, zz, and preconditioning vectors

For Gauss elimination allocate aa full matrix

af_mat_set()

[function in file matset.c]

Set up airflow matrices.

Transfer control parameters from _rcdat to the structure for airflow calculations

Set up vector of pointers to nodes with constant pressure nodes last

Determine positions of all non-zero elements in flow solution matrix - in acolset(

)

Allocate and fill the ijf vector sparse data mapping - see Sparse Matrix Data Structure

For the skyline method for solving simultaneous algebraic equations

Report the initial matrix profile structure - in ija_prfl(

)

Compute new sequence of equations to reduce average profile - in ija_optord(

)

Reset the airflow equation numbers in the node data structures

Report the final matrix profile structure

Allocate remaining arrays depending on solution method - see af mat alc(

)

Set pointers for off-diagonal elements in the link structures

Report solution notes to the LOG file

ambtctm get(

)

[function infile weather.c]

Get the weatherfile datafor the current simulation time.

Note: the ambtctm structure defined in weather.c holds data for computing the contaminant

mass fractions at the current simulation time (_sim_time) from data in the contaminant file at the

times (timeO and timel) that bound the simtime.

Set the contaminant file pointer

Reset time at end-of-day

Read the contaminant file until timeO < _sim_time <= timel

Reset timeO and corresponding data as necessary

Check the data date

Read and store the time and corresponding contaminant data

Determine the mass fraction of the first non-trace contaminant

Set contaminant data for current simulation; use linear interpolation if not at timel

Transfer data to the structure for _ambt node global variable

10

Part 2 - ContamX Program Structure

ambtctmjnit(

)

[function infile weather, c]

Initial processing ofthe contaminantfile.

Open the contaminant file - using nxtopen(

)

Confirm file type and version

Read the contaminant file start and end dates

Confirm simulation dates within contaminant file dates

Read number of species in file and allocate vectors in _ambtctm structure

Read species names and determine which match simulation contaminants

Position contaminant file at the simulation start date

Read and store contaminant data for time 00:00:00

For cyclic simulation save position in contaminant file of first time step

Determine the mass fraction of the first non-trace contaminant

The weather and contaminant files are read using the nxtword() utility function. This requires

that the _unxt file pointer be set to the weather file or the contaminant file before each is read.

calc_SP(

)

[function infile simulate,c]

Calculate stack pressuresfor eachflow path.

This function computes the Pi, P2 , and pg(zi-Z2) terms from the Bernoulli equation:

AP = p
:

+pr
2 x

pV{2 \

+ P§(z 1

Pi and P2 are computed by a hydrostatic adjustment to the reference pressures in nodes 1 and 2.

zj and Z2 are the elevations of the ends of the link relative to nodes 1 and 2. For airflow paths the

elevations are identical. They may differ for ducts. The algorithm includes hydrostatic

equations for incompressible and compressible air.

The final result is an estimate for the pressure drop across each opening based on the reference

pressures in the connected nodes, the wind pressure, and the 'stack* pressure.

calc_WP(

)

[function in file simulate, c]

Calculate wind pressuresfor eachflow path.

The wind pressure for links not connecting to the ambient node is zero. It is also zero if no wind

pressure model has been specified for the link. Wind pressure models include constant value,

linear interpolation using lint 1 d(), spline interpolation using splint(), and a trigonometric

interpolation using htrigf(), betw een user specified wind pressure values as a function of relative

azimuth angle.

ctrl_links(

)

[function infile prjdata.c]

Set control nodes and linksfor simulation.

11

Part 2 - ContamX Program Structure

Set pointers to incoming data according to data type and number

Create linked list of control nodes in calculation sequence

Here it is necessary to set the pointers in sensors to the proper node data (for zones and

junctions) and the proper link data (for paths and ducts). Note that nodes and links can be sensed

and controlled making it is impossible to place the control data in the project file so that the

referenced items have been defined.

The control structures are then placed in a linked list (starting at CtrlO) so that when a node is

called while sequentially processing the list in ctrl_sim() the input signals will be current. The

sequence was determined in ContamW in function ctrl_order() in file prjpack.c.

ctrl_sim(

)

[function in ctrlsim.c

]

Process day-schedules, exposure-schedules
,
and controls.

Set clock-time (inch DST) and day type

Loop through the week-schedule list

Loop through the control nodes list

Set any scheduled zone temperatures

Loop through the exposure-schedule list

de_mat_alc(

)

[function infde matset.c]

Allocate differential equation solution arrays.

Determine number of non-zero coefficients in symmetric matrix - see ija minsetf)

Allocate and set the ija index vector - see ija minsetC)

Allocate the sa, b, and x coefficients vectors

For symmetric skyline solution method allocate remaining arrays - in sky_alc(
)
in file matset.c

For conjugate gradient method allocate p, pp, r, rr, z, zz. and preconditioning vectors

For Gauss elimination allocate aa full matrix.

FillAf()

[function in afesim.c]

Fill the Jacobian matrixfor airflows.

Clear the Jacobian coefficients vector

Loop through all air links

Initialize the coefficients on the diagonal to dM/dt for variable pressure nodes

Initialize the coefficients on the diagonal to 1.0 for variable pressure nodes

Initialize the X F and X |F| values for each node.

Loop through all air links

If a numerical derivative is being computed

Compute flows for adjusted pressure drop

For each flow (1 or 2) through the link

Compute dF/dP if a numerical derivative is used

Add flows to the X F and X FI values

12

Part 2 - ContamX Program Structure

Add dF/dP value to the appropriate coefficients in the Jacobian vector

Check for zeroes on the diagonal (would cause divide-by-zero in solution)

Set any such nodes to constant pressure and recompute all values

Note the use a linked list of link (path) structures and of C pointer to functions:

:or
(
pp=_pafpO; pp; pp=pp->next) // loop through all flow paths

{

~

IX (*pf) (AF_PATH) = pp- >pe- >pfunc ; // pointer to simulation function

pf
(pp) ; // compute the flow(s) through path pp

I he linked list provides a very simple structure to loop through the flow paths. The pointers to

functions provide a way to call the different types of flow paths without creating a switch

statement to access each different type of path. The functions to evaluate each different type of

tlow path or duct are included in file afesim.c.

j Fill_Mf()

[function in solvmfc]

j ija minset()

[function infile mcitset.c]

Minimize the sparse matrix index vector.

Reduce the "full" sparse matrix index vector, ijfi to ija which does not include diagonal elements

or upper triangle, if symmetric. Call once with count = 0 to determine size of ija , then call with

count = 1 to fill ija.

j ija_optord(
)

[function infile matset.c]

Determine the optimum (minimum profile) orderingfor a set ofsimultaneous equations.

From the old sparse matrix index vector ija (see Sparse Matrix Data Structure) use the ACM
Transactions On Mathematical Software (TOMS) 582 algorithm to compute a new optimum

ordering for the variable pressure/mass/... rows. The TOMS 582 algorithm has been converted

from Fortran to C in file gpskc.c. Return the new ordering in the new vector. Return 1 if the

ordering has changed, 0 if it has not.

j init_Af(
)

[function in solvaf.c]

Use linear relations to determine initial guessfor pressures.

Zero the sparse matrix array

Loop through all links setting airflow matrix coefficients for linear flow elements models

Solve the simultaneous linear equations for node pressures - see solve slae(

)

Set up the coefficients of the airflow matrix so that solution of the simultaneous linear equations

will give an initial guess of pressures to start the Newton-Raphson method for solving the non-

13

Part 2 - ContamX Program Structure

linear airflow equations. This initialization tends to save a few N-R iterations and is useful for

cases involving large numbers of airflow nodes.

init_Mfn(

)

[function in solvmfc]

Initialize arrays for non- trace massfraction calculations.

Set the initial mass fractions in the zones and junctions.

Set the initial mass fractions in the boundary layer controlled sinks.

Set up the matrix for computing the mass fractions - in Fill_Mf(

)

init_Mft()

[function in solvmfc]

Initialize arraysfor trace massfraction calculations.

Set the initial mass fractions in the zones and junctions.

Set the initial mass fractions in the boundary layer controlled sinks.

Set up the matrix for computing the mass fractions - in Fill_Mf(

)

mat_init(

)

[function in file contamx. c]

Allocate the matrices for solving airflows and massfractions.

Allocate JacBins to report airflow solution iterations

Set up airflow matrices - see af mat self

)

Set numerical derivative flags - in setNmDrv(

)

If using non-trace contaminants

Copy control parameters from _rcdat to _MFn_mat

Set up non-trace mass matrices - see mf mat setf

)

If using trace contaminants

Copy control parameters from _rcdat to _MFt_mat

Set up trace mass matrices - see mf mat set{

)

mat_term(
)

[function infile contamx. c]

Free the allocated matricesfor solving airflows and massfractions.

All heap memory allocated in mat init() is freed in reverse order in mat_term(). Other memory

allocated earlier in prj_read(), contamx(), and main() is also freed.

mf_mat set(

)

[function infile matset.c]

Set up contaminant matrices.

Transfer control parameters from _rcdat to the structure for mass fraction calculations

Set up vector of pointers to nodes with constant pressure nodes last

Determine positions of all non-zero elements in flow solution matrix - in acolset(

)

Allocate and fill the ijf vector sparse data mapping - see Sparse Matrix Data Structure

14

Part 2 - ContamX Program Structure

For the skyline method for solving simultaneous algebraic equations

Report the initial matrix profile structure - in ija_prfl(

)

Compute new sequence of equations to reduce average profile - see ija optordf

)

Reset the airflow equation numbers in the node data structures

Report the final matrix profile structure - in ija_prfl(

)

Allocate remaining arrays depending on solution method - see de mat alc(

)

Set pointers for off-diagonal elements in the link structures

Report solution notes to the LOG file

prj_read(

)

[function infile prjread.c]

Read the project (PRJ) file.

This and related functions in the same file have been written to read the project file for

ContamW or for ContamX depending on the definition of the macro CTMW being 1 or zero,

respectively. ContamW uses data such as sketchpad data and units for displaying parameters

that are not needed in ContamX.

The ContamW version of prj_read() includes code for updating previous versions of the project

file. Sections of the project file are read by functions within the prjread.c file. Sections are

ordered so that items referenced by pointers in the data structures are read before they are

referenced. For example, a flow path must refer to a flow element, so flow elements are read

before flow paths. If a significant error is encountered while reading any section, input

processing is terminated and an error code is returned by prj_read().

The ContamW version calls functions to check and process pointers in the controls because

control nodes have pointers to other control nodes. The ContamX version includes related

processing for controls and functions to create the airflow network by converting zones and

junctions to network nodes and converting paths and ducts to network links - see sim data() .

Several temporary data structures are allocated, used, and then freed. For example, most named

elements such as schedules, filters, flow elements, etc., are stored in individually allocated

structures with an allocated vector of pointers to those structures. When such an element is later

referenced by sequence number, that number is converted to the pointer to the element according

to the vector of pointers.

sim_data(

)

[function infile pijdata, c]

Convert project data toforms usedfor simulation.

Transfer elements from the _rcdat structure to individual global variables

Transfer steady-state weather data to ambient airflow node.

Transfer default contaminant concentrations to ambient airflow node.

Set ductwork junction volumes - in jct_set(

)

Set airflow node data - in afnd_set(

)

Set airflow link data - in afpt_set(

)

Define implicit flow elements: simple AHS and duct leaks

Set implicit flow paths

15

Part 2 - ContamX Program Structure

Check completeness of airflow network - in airnet_check(

)

Create linked list of day-schedules

Create linked list of week-schedules

Complete trance and non-trace source linked lists

Copy boundary-layer non-trace sinks to separate list

Copy boundary-layer trace sinks to separate list

Convert occupancy zones to node pointers

Create linked list of exposure structures

Complete control links - see Ctrl iinks()

j sim_init(

)

[function infile simulate, c]

Initializeflows and compute steady-state massfractions.

if using non-trace contaminants

Compute gas constant for mixed air in each zone

Compute mass of air in each zone

If using WPC File

Get wind pressure from WPC File [in WPC_get()]

Compute wind pressures - see calc WP{

)

Compute stack pressures - see calc SP{

)

Initial guess for pressures by linear flow approximation - see init Af{

)

Reset convergence and time step values

Iterate through density changes:

{

Solve for airflows by Newton-Raphson iteration with

simple trust region method - see SolveAfstrf

)

or simple under-relaxation - see SolveAfsurf

)

Break loop if densities have converged

Tighten N-R convergence for next iteration

If using non-trace contaminants

Compute non-trace mass fractions [in init_Mfn() and solv_DE()]

Compute gas constant for mixed air in each zone

Compute mass of air in each zone

Re-compute stack pressures - see calc SP(

)

}

Initialize trace and non-trace mass transfer data - see init Mfn() and init Mff()

Compute trace mass fractions [call solv_DE()]

If not initializing for transient simulation, report results - in simout(

)

j sim_loop(

)

lfunction in file simulate.c]

Perform transient simulation.

Set parameters to control output and time step loop

Display information (for DOS window only)

16

Part 2 - ContamX Program Structure

While (not done):

{

Check for/process user interruption

Initialize daily summary results as needed

Increment time of day by one time step

Get contaminant data - see ambtctm get(

)

Get weather data - see weather qet(

)

Compute airflows and mass fractions for current time - see sim step(

)

Write results if time of day is on a listing time step - in simout(

)

Compute flows for daily summary

Compute mass fractions for daily summary

Check for reaching non-cyclic end point - set done

If (time = 24:00:00)

Write daily summary results

Check for cyclic convergence - set done

If (not done)

Advance day count; reset time of day to 00:00:00

Write results

Reset read position in weather and contaminant files

}

Write summary results - in simout(

)

Close results files, weather file, and contaminant file

sim_step(

)

[function in file simulate, c]

Simulate a single time-step.

Save mass and mass fraction values at end of last time step

Set all schedule values and process controls - see Ctrl sim(

)

Compute scheduled mass gains

Compute wind pressures - see calc WP(

)

Loop until zone masses converge

{

Compute stack pressures - see calc SF(

)

Solve for airflows by Newton-Raphson iteration with

simple trust region method - see SoiveAfstr(

)

or simple under-relaxation - see SolveAfsur(

)

If using non-trace contaminants:

Compute non-trace mass fractions - see solve Mfn(

)

Re-compute gas constant for mixed air in each zone

Compute mass in each zone

Check zone mass convergence

}

Solve trace species mass fractions - see solve Mft(

)

Compute exposure values

17

Part 2 - ContamX Program Structure

solve_DE(

)

[function in file solvde.c]

Solve differential equations by trapezoidal integration and mixed direct/iterative solution of
simultaneous equations.

Solve [A] {x} = {b}. Temporary [A] and {b} created so new {xp} can be calculated.

Solve_Mfn()

[function in solvmfc]

Solve for the mass fractions ofthe non-trace contaminants.

This function uses the same process described in solve Mft() except that only the non-trace

contaminants are considered.

Solve_Mft(
)

/function in solvmfc]

Solve for the mass fractions ofthe trace contaminants.

See also Solution of the Species Differential Equations .

If on the first iteration during a time step:

Compute the constant (predictor) portions of the difference equation

Fill the [A] matris - in Fill_Mf(

)

Solve the difference equations for values at the end of the time step

Transfer results to node and sink structures

SolveAfstr()

[function in solvaf.c]

Solve symmetric simultaneous non-linear algebraic equations by Newton-Raphson with simple

trust region.

Dr. David Lorenzetti developed this function. It provides a more robust algorithm than the

earlier under-relaxation method. It is the default method and should be used unless some

particular problem is encountered.

SolveAfsur(
)

[function in solvaf.c]

Solve symmetric simultaneous non-linear algebraic equations by Newton-Raphson with simple

under-relaxation.

Loop until convergence or iteration limit

Fill the airflow solution matrix - see FillAff

)

Check convergence

Solve simultaneous linear equations for dP values - see solve siae(

)

Under-relax the pressure adjustments

Adjust the airflow node pressures

Clear any numerically insignificant airflows

This method was used in ContamW 1.0 and the earlier DOS versions of CONTAM.

18

Part 2 - ContamX Program Structure

solve_slae(

)

[function in solvse.c]

Solve symmetric simultaneous linear algebraic equations.

Select solution method:

Skyline:

Transfer data from sparse to skyline arrays - in fill_sky_s(

)

L-U factor skyline matrix - in luf_sky_s(

)

Solve simultaneous equations directly - in lus_sky_s(

)

Preconditioned conjugate gradient (PCG):

Transfer data from sparse to preconditioning array - in fill_ssm(

)

Perform incomplete Cholesky decomposition - in luf_chl_c(

)

Solve simultaneous equations iteratively - in sa_pcg(

)

Gauss elimination:

Transfer data from sparse to full arrays - in fill_ges(

)

L-U factor the full matrix - in luf_ge(

)

Solve the simultaneous equations - in lus_ge(

)

The skyline method does a direct solution using a reduced array. It is more reliable than PCG
and usually faster for small problems. The PCG method is faster for large problems if it

converges. The gauss elimination method is only to provide a well-established solution for

comparison with the other methods. It is prohibitively slow for larger problems.

weather_get(

)

[function infile weather, c]

Get the weatherfile datafor the current simulation time.

Note: the weather structure defined in weather.c hold data for computing the weather data at the

current simulation time (_sim_time) from data in the weather file at the times (timeO and timel)

that bound the _sim_time.

Set the weather file pointer

Reset time at end-of-day

Read the weather file until timeO < _sim_time <= timel

Reset timeO and corresponding data as necessary

Check the data date

Read and store the time and corresponding data

Reset wind direction for interpolation

Set weather data for current simulation; use linear interpolation if not at timel

Convert ASHRAE humidity ration to Contam mass fraction of H20

Transfer data to global variables

weather_init(

)

[function infile weather.c]

Initial processing ofthe weatherfile.

Open the weather file - using nxtopen(

)

Confirm file type and version

19

Part 2 - ContamX Program Structure

Read the weather file start and end dates

Confirm simulation dates within weather file dates

Read and store day-of-week, day-type, DST, and Tg for all dates

Position weather file at the simulation start date

Set day-data globals: _daytyp, _dayofw, _DSTind

Read and store weather data for time 00:00:00

For cyclic simulation save position in weather file of first time step

The weather and contaminant files are read using the nxtword() utility function. This requires

that the _unxt file pointer be set to the weather file or the contaminant file before each is read.

2.3.3 Utility Functions

Compiler dependent functions have been grouped in file config.c. Memory allocation and de-

allocation functions are in file heap.c. Other utility functions are in file utils.c. Three different

compilers have been used - two for the earlier DOS-based CONTAM93 and CONTAM96
programs, and Visual C++ versions 6.0 and .NET for the current MS Windows based program.

File path processing

[functions infile config.c]

These functions are used to create output file paths that will open in the proper directory.

pathsplit() converts a path into its component parts (drive, directory, name, and extension).

pathmerge() does the opposite.

Error handling

[functions infile config.c]

Error messages are generated by a call to the error() function. Passed parameters include the

severity of the error, the name and line number of the file from which error() is called, and an

indefinite number of strings describing the error. The function maintains a count of ‘‘severe'

errors. The global variable emode (in setEmode()) controls display of the error message.

If severity >= 0, the function will merge the message strings into a single string and create

another string reporting the file name and line number - i.e., the source of the error. The

severity, source, and error message are then displayed in a dialog box or the DOS window
depending on emode, and they are written to the LOG file.

If severity > 2, ContamX will be terminated by calling finish() which also closes all open files.

If severity = 2, the count of severe errors is incremented.

If severity < -1
, the count of severe errors is reset to zero.

If severity = -1, the only action is to return the current count of severe errors.

If the count of severe errors reaches 10 and the dialog box is in effect, the user will be asked if he

wants to terminate the simulation. If he does not, the count of severe errors is reset to zero.

This prevents an endless display of error messages that could occur in some circumstances.

20

Part 2 - ContamX Program Structure

The lognote() function is used to write similar informative messages to the LOG file only. It is

a debugging tool not intended to be informative to the general ContamX user.

Console input

[functions infile config.c]

getkey() is used to read a single keystroke. The wait parameter tells getkey() to wait until a

key is pressed or to return immediately if a key has not been pressed.

noyes() obtains a no or yes response to a query. It returns 0 for no or 1 for yes. The query is

presented in a dialog box or the DOS window depending on emode.

Heap tests

/functions infile config.c]

memrem() reports the memory still available in the heap. It is useful for determining if heap

memory has been properly freed. It works with the Borland and Watcom compilers but is not

available in Visual C++.

memwalk() reports the status of the allocated heap memory and then displays the status of every

heap allocation. This seems to not be working with the current Visual C++.

nptest() reports if a value has been written to address 0. This occurs when a value is written to a

null pointer. The test is not applicable to Visual C++.

Math error processing

[functions infile config.c]

flterr() and matherr() trap various floating point errors, print error messages, and terminate the

program.

Heap processing

[functions in file heap.c]

All memory allocations and de-allocations should go through alc_e() and fre_e() to allow some

useful heap checking options based on the definition of the macro MEMTEST: 1 = test guard

bytes; 2 = log actions; and 0 = no tests. When MEMTEST > 0, four guard bytes are added

before and after the normal heap memory allocation. These guard bytes are used to test writes

and reads beyond the ends of the allocated vector — especially useful for off-by-one indexing.

Based on an idea and code by Paul Anderson, "Dr. Dobb's C Sourcebook", Winter 1989/90, pp
62 - 66, 94. When MEMTEST > 1, every allocation and de-allocation is reported in the LOG
file.

alc_e(), fre_e(), and chk_e() allocate, de-allocate, and check the guard bytes of a single block

of memory. The check is automatically performed at de-allocation.

alc_mc(), fre_mc(), and chk_mc() allocate, de-allocate, and check a rectangular matrix (2-

dimensional array) given minimum and maximum row and column indices. Memory is allocated

contiguously.

alc_mvc(), fre_mvc(), and chk_mvc() allocate, de-allocate, and check a matrix with variable

length rows (used to store skyline method coefficients).

21

Part 2 - ContamX Program Structure

alc_v(), fre_v(), and chk_v() allocate, de-allocate, and check a vector (2-dimensional array)

given the minimum and maximum indices.

alc_ec(), fre_ec(), and alc_eci() speed and simplify allocation and de-allocation for many
small structures such as the Contain zones, paths, schedules, flow elements, etc. Small structures

are ‘allocated' within a larger allocated block which is initially created with alc_eci(). A single

call to fre_ec() will de-allocate the entire block; individual structures cannot be freed. This

saves quite a bit of memory allocation overhead and is quite a bit faster than calling alloc() for

each small structure. Based on an idea and code by Steve Weller, "The C Users Journal", April

1990, pp 103 - 107.

Text File Reading Functions

[functions infile uti/s.c]

nxtopen(), nxtline(), nxtwrd(), and nxtclose() are used to process the project, weather, and

contaminant ASCII text data files. These functions process the file designated FILE *_unxt. A
key feature of these functions is their handling of erroneous input values.

Format Conversion Functions

[functions infile uti/s.c]

db!con() converts a string to an 8-byte real variable.

fltcon() converts a string to a 4-byte real variable.

longcon() converts a string to a 4-byte integer variable.

intcon() converts a string to a default size integer variable.

timecon() converts a string (hh:mm:ss) to seconds past midnight.

datecon() converts a string (dd/mm, mm/dd) to a day-of-year number (1 - 365).

datxcon() converts a string (mm/dd) to a day-of-year number (1 - 365) (for Excel

compatibility).

fltstr() converts a 4-byte real variable to a string.

intstr() converts a 4-byte integer variable to a string.

timestr() converts a 4-byte integer (seconds past midnight) to a string of the form: hh:mm:ss.

datestr() converts a day-of-year integer (1 - 365) to a string (ddmm).

datxstr() converts a day-of-year (1 - 365) to a string (dd/mm) (for Excel compatibility).

Input Conversion Functions

[functions infile uti/s.c]

readR8() reads the next word from file unxt and converts it to an 8-byte real variable.

readR4() reads the next word from file unxt and converts it to a 4-byte real variable.

readI4() reads the next word from file unxt and converts it to a 4-byte integer variable.

readI2() reads the next word from file unxt and converts it to a default size integer variable.

readHMS() reads the next word from file unxt and converts it to a 4-byte integer time value.

22

Part 2 - ContamX Program Structure

readMD() reads the next word (ddmm, mmdd) from file unxt and converts it to a day-of-year

number (1 - 365).

readMDx() reads the next word (dd/mm) from file unxt and converts it to a day-of-year

number (1 - 365).

The ‘‘default size" integer is 2-bytes for a 16 bit compiler and 4-bytes for a 32 bit compiler.

CONTAM presently enforces the rule that such an integer must be in the range -32767 to

+32767, i.e., fits in a 2-byte integer. This limits the maximum number of zones, paths, etc., to

32767. Relaxing this limit will also require the conversion of small integers in the data

structures.

2.3.4 Sparse Matrix Data Structure

Calculation of both the airflows and mass fractions involve solving simultaneous linear algebraic

equations. These simultaneous equations can be expressed in matrix form: [A] {x} = {b} where

{b} is an N-element vector, [A| is an N by N matrix, and the solution {x} is an N-element vector.

As N gets large (CONTAM projects with over 3000 nodes have been created) the size ofA
becomes excessive and the execution time using full matrix methods becomes even more

excessive. When N is large only a small portion of elements ofA are non-zero, therefore sparse

matrix techniques should be used to solve such problems. There are also methods to store only

the non-zero elements of A.

Press et al. [8 p78] present a good method for storing sparse matrices:

"To represent a matrix A of dimension N x N, the row-indexed scheme sets up two one-

dimensional arrays, call them sa and ija. The first of these stores matrix element values in single

or double precision as desired; the second stores integer values. The storage rules are:

• The first N locations of sa store A's diagonal matrix elements in order. (Note that diagonal

elements are stored even if they are zero; this is at most a slight storage inefficiency, since

diagonal elements are nonzero in most realistic applications.)

• Each of the first N locations of ija stores the index of the array sa that contains the first off-

diagonal element of the corresponding row of the matrix. (If there are no off-diagonal elements

for that row, it is one greater than the index in sa of the most recently stored element of a

previous row.)

• Location 1 of ija is always equal to N + 2. (It can be read to determine N.)

• Location N + 1 of ija is one greater than the index in sa of the last off-diagonal element of the

last row. (It can be read to determine the number of nonzero elements in the matrix, or the

number of elements in the arrays sa and ija.) Location N + 1 of sa is not used and can be set

arbitrarily.

• Entries in sa at locations > N + 2 contain A's off-diagonal values, ordered by rows and, within

each row, ordered by columns.

• Entries in ija at locations > N + 2 contain the column number of the corresponding element in

sa ."

In ContamX the coefficients for the airflow Jacobian and for the mass fraction calculations are

first stored into this sparse structure. They may then be transferred to another data structure

23

Part 2 - ContamX Program Structure

designed for the solution algorithm being employed. There is a small run-time overhead for this

process, but it is very flexible when it is not known that a single best solution method exists for

all cases.

2.3.5 Solution of the Species Differential Equations:

The transient evolution of the node contaminant masses and mass fractions are determined in a

the following manner. It is expressed in terms of {Q}

{Q} = [C]{X}
(1)

where {Q} is the vector of masses of all species in all nodes, [C] is a diagonal matrix of node air

masses, and {X} is the vector of mass fractions.

The basic time discretization is

{Q}, ~{0_*+{0A/ (2)

where the following linear approximation will be used:

{Q}=[K]{X} + {G} (3)

[AT| is the matrix of inter-nodal mass flows (and reactions), and {G } is the vector of net mass

generation rates. For large problems [AT] will be sparse.

Equation (3) will be solved using a trapezoidal approximation of the derivative term:

{Q), = w,.* + (i - r)A/{0,.4,
+ r am, (4)

where y is a parameter controlling the stability and accuracy of the integration:

y = 0 corresponds to the standard explicit method,

y = 1/2 corresponds to the Crank-Nicholson method,

y = 2/3 corresponds to the Galerkin method, and

y = 1 corresponds to the standard implicit method.

y must be greater than or equal to 0.5 for unconditional stability, although values below about

0.75 may show oscillations.

Equation (4) can be rearranged as

{Q}, = {0 (_* + yM{Q}, (5)

where

{0,-a, ={0,-*+(i-r)A/{0_* (6)

is a quantity based entirely on values known at end of the last time step, time t-At.

Equation (5) can be converted into the form to solve for {X>

:

[A}{X} = {B] (7)

with

M] = [C], -yM[K\ (8)

Part 2 - ContamX Program Structure

and

{B} = {Q} l
_AI+rAt{G} l (9)

In equation (8) there appears to be the possibility of a coefficient on the diagonal of [A] going to

zero. This should not happen because kn ,n < 0 (and kn ,m > 0) which forces an n > 0 (and an m < 0).

I lie only possible problem is in the case of an isolated node, kn ,n
= 0, that is also massless, cn = 0,

which will require special handling.

Note on derivation of equations (7) - (9) from equation (5):

[C], {X}, = {£>},_,, + r&([K],{X}
l + {G},) (10)

{[Cl-yM[K],){X}, ~{Q},^ + rAt{G}, (11)

2. 3. 5. 1 Special Cases

(I) A steady state solution for {X} is obtained by rearranging equation (3):

[K]{X} = -{G} (12)

(2) cn = 0 (massless node)

There is no transient storage effect, therefore xn at time t is determined by the flows into the node

at that time. This is equivalent to the steady-state solution of equation (12).

(3) kn ,n = 0 (no flow - isolated node)

l or cn > 0, the cn term in the coefficient on the diagonal (see equation (11)) will prevent division

by zero.

l or cn = 0, solution of equation (1 1) will lead to a division by zero. The practical solution is to

alter the coefficients in [A] and { B} so that xn ,t
will be xn ,t-At after solving equation (7). That is,

a„ „
= 1 , an ,m

= 0 for all m, and b„ = xn ,t-At-

2. 3. 5. 2 Numerical Methods

ContamX 2 includes several methods for solving equation (7), which represents a set of

equations that are linear, non-symmetric, and diagonally dominant. The direct solvers are Gauss

elimination (for test purposes only) and a non-symmetric skyline method for practical

computations. The performance of the latter can depend on the ordering of the equations. It uses

the TOMS 586 algorithm to improve that ordering. This is possible because the structure of [A]

is symmetric even though the coefficients are not. Two iterative methods are available: a bi-

conjugate gradient technique which currently has a problem when {X} = 0, and a simple

successive over-relaxation (SOR) method. The iterative methods require less memory than the

direct methods, but may or may not be faster depending on the matrix size, sparsity pattern, and

the number of iterations for convergence.

Part 2 - Project File (.PRJ)

2.4 CONTAM Input and Output Files

This section provides detailed information of the files used by ContamX and ContamW.

2.4.1 Project File (.PRJ)

CONTAM 2 consists of two separate programs: ContamW provides the graphic user interface

for describing the building and viewing simulation results; ContamX performs the simulation.

'‘Project' * files (.PRJ extension) provide input to both ContamW and ContamX. Project files are

created by the functions in file prjsave.c in ContamW and read by the functions in file prjread.c

in ContamW and ContamX. The project file contains some information that is used only by

ContamW and not by ContamX, e.g., input units and the SketchPad display data. These data are

read when the macro name CTMW is defined to be 1, and they are not read when it is defined to

be 0.

Most of the data are read into structures that are defined in the files contam.h and celmts.h for

ContamW and files simdat.h and selmts.h for ContamX. Some data are read into global

variables that are defined in cglob.h and cxtm.h for ContamW and sglob.h and sxtrn.h for

ContamX. These variables are indicated by a leading underscore. in their name.

One important feature of the project files is the tremendous variety of data stored. It has been

divided into sections grouping similar kinds of data, or objects, together. Each section is

terminated with the special value -999 which serves as a check for some reading errors. Within

each section there are usually multiple objects, each stored into an individual structure. Such a

section begins with the number of objects and starts the data for each object with a sequence

number that serves to check for reading errors. These objects may be ordered as arrays when the

total number is constant, or as linked lists to allow the number to vary.

In the following material individual variables are briefly described. Units are indicated within

brackets,
[]. The type of variable is in parentheses (matching the definitions in the include file

types. h).

12 - a two-byte long signed integer (C type "short")

14 - a four-byte long signed integer (C type "long")

IX - a default length signed integer (C type “inf ')

UX - a default length unsigned integer (C type "unsigned")

R4 - a four-byte long real (C type “float")

R8 - an eight-byte long real (C type "double")

Variables used only by ContamW are indicated by {W}.

Each section includes sample data from the Sample! 1 .prj file. This file includes samples of all

the different flow and source element types. Only part of Section 3 is shown (...) to save space.

A simulation of the Sample! 1 .prj project file can be run, but the results are not very meaningful.

Comments are included in the project file to make it somewhat human-readable. Anything after

an exclamation mark, !, to the end of the line is not read by the input processor.

26

Part 2 - Project File (.PRJ)

2.4. 1. 1 Sections of the PRJ file:

Section 1 : Project. Weather. Simulation, and Output Controls

Section 2: Species and Contaminants

Section 3: Level and Icon Data

Section 4: Day Schedules

Section 5: Week Schedules

Section 6: Wind Pressure Profiles

Section 7: Kinetic Reactions

Section 8: Filters

Section 9: Source/Sink Elements

Section 10: Airflow Elements

Section 1

1

: Duct Elements

Section 12: Control Nodes

Section 13: Simple AHS

Section 14: Zones

Section 15: Initial Zone Concentrations

Section 16: Airflow Paths

Section 17: Duct Junctions

Section 18: Initial Junction Concentrations

Section 19: Duct Segments

Section 20: Sources/Sinks

Section 2

1

: Occupancy Schedules

Section 22: Exposures

Section 23: Annotations

27

Part 2 - Project File (.PRJ)

j Section 1: Project, Weather, Simulation, and Output Controls

C omment lines are added by ContamW (see example) to help visually identify the parameters.

I he first line ofthe project file identifies the source program:
* ring [] // program name should be "ContamW" (II)

' ring [] // program version should be "2.0" (II)

:ho // (0/1) echo input files to the log file (12)

I he second line is a user-defined description ofthe project:

r rjdesc[] // (unused) project description (II) { W

}

l he next line sets thefollowing miscellaneous values:

skwidth // total SketchPad width [cells] (12) {w}

skheight // total SketchPad height [cells] (12) {w}

lef units // default units: 0 = SI, 1 = US (12) {«}
ief flows // default flows: 0 = mass

, 1 = volume (12) {W}

ief_T // default temperature for zones [K] (R4)
{W}

udefT // units for temperature (12) {W}

rel_N // angle to true north [degrees] (R4) {w}

wind H // elevation for reference wind speed [m] (R4
)

{W}

uwH // units for wind H (12) { w}
wind Ao // local terrain constant (R4) {W}

wind a // velocity profile exponent (R4) {w}

The next line defines the weather (WTHDAT) for steady-state simulation in ContamX:
R4)

NOT corrected to sea level (R4

Tambt //
ba rpres //
windspd //
wunddir //
re 1 hum //
daytyp //
uTa //
ubP //
uws //
uwd //

ambient temperature [K]

barometric pressure [Pa]

wind speed [m/s] (R4)

wind direction: 0 = N, 90 =

relative humidity: 0.0 to 1

type of day (1-12) (12)

units for Tambt (12) { W

}

units for barpres (12) { W

}

units for windspd (12) { W

}

// units for winddir (12) { W

}

180 = S,

:R4)

;r4

The next line defines weather data (WTHDAT) for the wind pressure test in ContamW:
bient temperature [K] (R4) { W

}

rometric pressure [Pa] NOT corrected to sea level (R4)

nd speed [m/s] (R4) { W

}

Tambt //
barpres //
windspd / /

winddir / /

relhum //
daytyp //
uTa //

ubP //
uws //
uwd //

The next two lines

{»}

180 = S

:R4) {w}

:r4) {w}

type of day (1-12) (12) {w}

units for Tambt (12) { W

}

units for barpres (12) {w}

units for windspd (12) { W

}

units for winddir (12) {w}

_WTHpath [_MAX_PATH] //
_CTMpath [_MAX_PATH] //
_CVFpath [_MAX_PATH] //

DVFpath [MAX PATH] //

full name of weather file (II)

full name of contaminant file (II)

full name of continuous values file (II) {Contam 2.1}

full name of discrete values file (II) {Contam 2.1}

28

Part 2 - Project File (.PRJ)

Thefollowing lines define path location data (PLDDAT) for the creating the WPCfile:

{Contain 2. 1}

_WPCf ile [_MAX_PATH] // full name of WPC file (II)

EWCf ile [_MAX PATH] // full name of EWC data source file (II) (w)

WPCdesc []

XO

YO

ZO

angle
u_XYZ
epsPath
epsSpcs

tShif

t

dStart
dEnd
_useWPCwp
_useWPCmf

The next line defines the location (LOCDAT) (forfuture use with thermal simulation):

latd // latitude (degrees: north +, south -) (R4

)

Igtd // longitude (degrees

:

east +, west -) (R4

)

Tznr // time zone (Greenwich = 0, Eastern = - 5 , etc
altd // elevation above sea level [m] (R4)

Tgrnd // ground temperature [K] (R4

)

utg // units for ground temperatures (12)

u a // units for elevation (12)

II WPC description (II) { W

}

// X-value of ContamW origin in EWC coordinates [m] (R4) {w}

// Y-value of ContamW origin in EWC coordinates [m] (R4) { W

}

// Z-value of ContamW origin in EWC coordinates [m] (R4) { W

}

// Rotation of ContamW relative to EWC coordinates (R4) {w}

// units of coordinates (12) {w}

// tolerance for matching path locations [-] (R4) {w}

// tolerance for matching species [-] (R4) {w}

// time shift of EWC data { W } [s] (hh:mm:ss —» IX) {w}

// date WPC data starts (12) { W

}

// date WPC data ends (12) {w}

// if true, use WPC file wind pressures (12)

// if true, use WPC file mass fractions (12)

The remaining data is stored in the run control (RCDAT) structure. In ContamX some values

may be transferred to other variables before being used. The next two lines control the airflow

simulation - first the nonlinear part:

sim_af // airflow simulation:' 0 = steady, 1 = dynamic (12)

afcalc // N-R method for non-linear eqns : 0 = SUR, 1 = STR
afmaxi // maximum number of N-R iterations (12)

afrcnvg // relative airflow convergence factor (R4)

afacnvg // absolute airflow convergence factor [kg/s] (R4)

afrelax // flow under-relaxation coefficient (for SUR) (R4)

uac2 // units for afacnvg (12)

12

and then the linear part:

afslae // method for linear equations: 0 = SKY, 1 = PCG (12)

aflmaxi // maximum number of iterations (PCG) (12)

aflcnvg // relative convergence factor for (PCG) (R4)

afrseq // if true, resequence the linear equations (12)

aflinit // if true, do linear airflow initialization (12)

Tadj // if true, use temperature adjustment (12)

The next three lines control the massfraction calculation - firstfor cyclic simulation:

sim_mf

ccmaxi
ccrcnvg
ccacnvg
ccrelax

// mass fraction (contaminant) simulation:

// 0 = none, 1 = steady, 2 = transient, 3 = cyclic (12)

// simulation: maximum number of cyclic iterations (12)

// relative convergence factor (R4)

// absolute convergence factor [kg/kg] (R4)

// (unused) over-relaxation coefficient (R4)

29

Part 2 - Project File (.PRJ)

uccc // units for ccacnvg (12)

thenfor non-trace contaminants:

mfnmthd
mfnmaxi
mfnrcnvg
mfnacnvg
mfnrelax
mfngamma
uccn

// simulation: 0 = SKY, 1 = BCG, 2 = SOR

// maximum iterations (12)

// desired relative convergence (R4)

// desired absolute convergence (R4)

// relaxation coefficient (R4)

// trapezoidal integration factor (R4)

// units for mfnacnvg (12)

(12)

and then for trace contaminants:

mftmthd // 0 = SKY, 1 = BCG, 2 = SOR (12)

mftmaxi // maximum iterations (12)

mftrcnvg // desired relative convergence (R4)

mftacnvg // desired absolute convergence (R4)

mftrelax // relaxation coefficient (R4)

mftgamma // trapezoidal integration factor (R4)

ucct // units for mftacnvg (12)

The next line has four parameters; only the ones relating to density changes are active:

sim_vt // (inactive) (0/1) variable zone temperature simulation (12)

tsdens // (0/1) vary density during time step (12)

ts.relax // (inactive) under- relaxation factor for calculating dM/dt (R4)

tsmaxi // maximum number of iterations for density changes (12)

The next line sets the dates, times, and time stepsfor simulation:

date_st // day-of-year to start steady simulation (mmmdd —» IX)

time_st // time-of-day to start steady simulation (hh:mm:ss —» 14)

date_0 // day-of-year to start transient simulation (mmmdd —» IX)

time_0 // time-of-day to start transient simulation (hh:mm:ss —> 14)

date_l // day-of-year to end transient simulation (mmmdd —> IX)

time_l // time-of-day to end transient simulation (hh:mm:ss —> 14)

time_step // simulation time step [s] (hh:tnm:ss —> IX)

time_list // listing (results) time step [s] (hh:mm:ss —> IX)

time_scrn // screen time step [s] (up to 1 day) (hh:mm:ss —> 14)

The next line controls the use ofthe restartfde:

restart // use restart file (12)

rstdate // restart date (mmmdd -4 IX)

rsttime // restart time (hh:mm:ss -a 14)

The remaining parameters control the simulation outputs. They are in global variables in

ContamX and the savef] vector in ContamWforflexibility. They may be spread over several

lines:

_list // data dump parameter (12)

// > 0 dump matrix analysis,

// = 2 dump SIM file output,

// > 2 dump lognotes.

pf save / save [0] // (0/1) save path flow results to SIM file (11

)

zf save / save [1] // (0/1) save zone flow results to SIM file (11)

zcsave / save [2] // (0/1) save mass fraction results to SIM file (11)

achvol / save [3

]

// (0/1) ACH based on true volumes instead of std volumes

30

Part 2 - Project File (.PRJ)

achsave / save [4] // (0/1)

abwsave / save [5] // (0/1)

cbwsave / save [6] // (0/1)

expsave / save [7] // (0/1)

ebwsave / save [8] // (0/1)

zaasave / save [9] // (0/1)

zbwsave / save [10] // (0/1)

save [11-3 0] // (unused;; value
save [31] // ContamW will c

save building air exchange rate transient data
save air exchange rate box-whisker data
save contaminant box-whisker data
save exposure transient data
save exposure box-whisker data
save zones age-of-air transient data
save zones age-of-air box-whisker data

ID
ID
{w}

The run control section is terminated with:

-999 // used to check for a read error in the above data

Note on outputs: _pfsave and zfsave always have the same value - 0 or 1 . The summaries,

save[3] to saveflO] are not currently active. They were developed for Contam96 to summarize

the results of long simulations.

Example:

ContamW 2.1 0

Test CONTAMW for proper display of all elements.
! rows cols ud uf T uT N wH u Ao a

58 66 0 0 296.150 2 0.00 10.00 0 0.600 0.280

! Ta Pb Ws Wd rh day u. .

293.150 101325.0 0.000 0.0 0.500 12001 ! steady simulation
293.150 101325.0 1.000 270.0 0.000 12001 ! wind pressure test

null ! no weather file
null i no contaminant file
null ! no continuous values file

null ! no discrete values file

null ! no WPC file

null ! no EWC file

WPC description
1 Xref Yref Zref angle u

0.000 0.000 0.000 0.00 0

I epsP epsS tShift dStart dEnd wp mf

0.01 0.01 00:00:00 l/l l/l 0 0

! latd longtd tznr altd Tgrnd u.

.

40.00 -90.00 -6.00 0 283.15 2 0

!sim_af afcalc afmaxi afrcnvg afacnvg afrelax uac
1 1 30 0.0001 le- 005 0.75 0

! afslae aflmaxi aflcnvg afrseq aflinit Tadj

0 100 le- 006 1 10
!sim_mf method maxi relcnvg abscnvg relax gamma ucc

2 30 1 . 00e-004 1.00e-005 1.250 0 !

0 100 1.00e-006 1.00e-015 1.100 1.000 0 !

0 100 1.00e-006 1.00e-015 1.100 1.000 0 !

isim_vt tsdens relax tsmaxi
0 0 0.75 20

(cyclic)

(non- trace

)

(trace

)

!date_st time_st date_0 time_0 date_l time_l t_step t_list t_scrn

JanOl 00:00:00 JanOl 00:00:00 JanOl 24:00:00 01:00:00 01:00:00 01:00:00

! restart date time
0 JanOl 00:00:00

I list pfsave zfsave zcsave

31

Part 2 - Project File (.PRJ)0111
ivol ach -bw cbw exp -bw age -bw00000000
i . .

.

_doDlg
000000000000000000000

-999

Section 2: Species and Contaminants

Species/contaminant data are read by the spcs_read() function and saved by the spcs_save(

)

function in ContamX. They are read by ctm_read() in ContamX.

The species/contaminant section starts with:

_nctm // total number of species simulated (= contaminants) (12)

The next line lists the numbers of the nctm species treated as contaminants. The ordering of the

contaminants is important, and is set in ContamW.
ctm[i] // i = 0 to nctm-1

The third line of this section gives:

_nspcs // the number of species

This isfollowed by a header line and then two lines ofdatafor each species:

The first line ofspecies data consists of:

nr // species number (12), in order from 1 to nspcs
sf lag // 1 = simulated, 0 = unsimulated species (12) {w}

ntf lag // 1 = non-trace, 0 = trace species (12) {w}

molwt // molecular weight - gas (R4)

mdiam // mean diameter - particle [m] (R4)

edens // effective densiity - particle [kg/m
A
3] (R4

)

decay // decay constant [1/s] (R4) {w}

ccdef // default concentration [kg/kg air] (R4)

Cp // (unused) specific heat at constant pressure [J/kgK]

ucc // units to display concentration (12) {w}

name [] // species name (11)

(R4)

The second line is:

desc [] // species description (II) {w}

The section is terminated with:

-999 // used to check for a read error in the above data (12)

Example:

2 ! contaminants:
1 2

4 ! species:

! # s t molwt mdiam edens decay CCdef Cp u

.

. . name

1 1 0 44 . 0000 0 . 000e+000 0 . 000e + 000 0 . 000e + 000 5 . 3184e-004 1000 . 000 1 0 0 Cl

2 1 0 44 . 0000 0 . 000e+000 0 . 000e + 000 0 . 000e+000 6 . 8379e-004 1000 . 000 1 0 0 C2

3 0 1 28 . 9645 0 . 000e+000 0 . 000e + 000 0 . 000e+000 1 . 0000e+000 0 . 000 0 0 0 DryAir

Dry
4

Air
0 1 18 . 0153 0 . 0000e+000 0 . 0000e + 000 0 . 0000e + 000 5.0000e- 003 0 . 000 0 0 0 H20

Water Vapor
-999

32

Part 2 - Project File (.PRJ)

Section 3: Level and Icon Data

The data for recreating the SketchPad is stored in this section. The data are read by the

level_read() function and saved by the level_save() function. The level data are stored in

LEV DATA structures that are defined in contain.h for ContainW and simdat.h for ContamX.

The icon data are stored in ICON_DAT structures in ContamX and are not saved in ContamX.

The level/icons section starts with:

nlev // number of levels (12)

This isfollowed by a data header comment line and then datafor all nlev levels.

Each level has a data line that includes:

nr // level number (12)

,

in order from 1 to nlev
refht // reference elevation. of level [m] (R4)

delht // delta elevation to next level [m] (R4

)

{w}

nicon // number of icons on this level (12)

u rfht // units of reference elevation (12) {W}

u dlht // units of delta elevation (12) {W}

name [] // level name (11)

This line isfollowed by a comment line and then datafor nicon icons.

Each icon has a data line consisting of:

icon // icon type - see 'special symbols' in contam.h (12

row // row position on the SketchPad (12) {w}

col // column position on the SketchPad (12) {W}

nr // zone, path, duct, etc., number (12
)

{w}

The section is terminated with:

-999 // used to check for a read error in the above data (12)

Example:

2 ! levels plus icon data:

! # refHt delHt
1 0 . 000 3 . 000

! icn col row #

14 15 17 0

23 19 17 5

23 21 17 6

23 23 17 7

23 25 17 8

23 27 17 9

16 49 33 0

42 19 34 6

2 3 . 000 3 . 000

1 icn col row #

162 10 14 1

145 11 14 0

185 32 38 7

185

-999
33 38 8

ni u name
44 0 0 one

78 0 0 < 3

>

33

Part 2 - Project File (.PRJ)

Section 4: Day Schedules

Day schedule data are read by the dschd_read() function and saved by the dschd_save(

)

function. The data are stored in the DY_SCHD structures that are defined in contam.h for

ContamW and simdat.h for ContamX.

The day schedules section starts with:

_ndsch // number of day schedules (12)

This isfollowed by a data header comment line and then datafor all ndsch schedules.

For each schedule the first data line includes:

nr // schedule number (12) ; in order from 1 to _ndsch
npts // number of data points (12)

shape // 0 = rectangular; 1 = trapezoidal (12)

utyp // type of units (12) { W

}

ucnv // units conversion (12) {w}

name [] // schedule name (II) {w}

and the second line has:

desc [] // schedule description (II) { W }
may be blank

This is followed by a line for each of the npts data points:
time // time-of-day [s] (hh.-mm:ss converted to 14)

Ctrl // corresponding control value (R4) [-]

The section is terminated with:

-999 // used to check for a read error in the above data

Example:

1 ! day- schedules

:

! # npts shap utyp ucnv name12010 DySchdl
Always On
00:00:00 1

24:00:00 1

-999

Section 5: Week Schedules

Week schedule data are read by the wschd_read() function and saved by the wschd_save(

)

function. The data are stored in the WK SCHD structures that are defined in contam.h for

ContamW and simdat.h for ContamX.

The week schedules section starts with:

_nwsch // number of week schedules (12)

This isfollowed by a data header comment line and then datafor all nwsch schedules.

For each week schedule the first data line includes:

nr // schedule number (12)

;

in order from 1 to _nwsch
utyp // type of units (12) { W

}

ucnv // units conversion (12) { W

}

name [] // schedule name (II) {w}

and the second line has:

desc [] // schedule description (II) {w} may be blank

34

Part 2 - Project File (PRJ)

and the third line has:

jl ... jl2 // 12 day schedule indices (12) - converted to pointers

The section is terminated with:

-999 // used to check for a read error in the above data

Example:

1 ! week- schedules

:

! # utyp ucnv name110 WkSchdl
Week schedule

.

111111111111
-999

Section 6: Wind Pressure Profiles

Week pressure profile data are read by the wind_read() function and saved by the wind_save(

)

function. The data are stored in the WIND PF structures that are defined in contain.h for

ContamW and simdat.h for ContainX.

The windpressure profiles section starts with:

_nwpf // number of wind pressure profiles (12)

This isfollowed by a data header comment line and then datafor all jvwpf profiles.

For each wind pressure profile the first data line includes:

nr // profile number (12) ; in order from 1 to _nwpf
npts // number of data points (12)

type // 1 = linear; 2 = cubic spline; 3 = trigonometric (12)

name [] // schedule name (II) {w}

and the second line has:

desc [] // profile description (II) { W }
may be blank

This isfollowed by a linefor each ofthe npts data points:

azm[] // wind azimuth value {R4} [degrees]

coef [] // normalized wind pressure coefficients {R4} [-]

The data points are used to compute the cubic spline or trigonometric coefficients.

The section is terminated with:
-999 // used to check for a read error in the above data

Example:

2 ! wind pressure profiles:
151 WindProfl
Wind pressure profile one.

0.0 1 . 000

90.0 0.500

180.0

1.000
270.0 0.500

360.0 1.000
291 WindProf2
Wind pressure profile two.

0.0 1.000
45.0 0.800

35

Part 2 - Project File (.PRJ)

90 .

0

0 .200

135 .

0

0 .800

180 .

0

1 . 000

225 .

0

0 . 800

270 .

0

0 .200

315 .

0

0 .800

360 .

0

1 . 000

999

Section 7: Kinetic Reactions

Kinetic reaction data are read by the kinetic_read() function and saved by the kinetic_save(

)

function. The data are stored in the KNR DSC structures that are defined in contain.h for

ContamW and simdat.h for ContamX.

The kinetic reactions section starts with:

_nkinr // number of kinetic reactions (12)

This isfollowed by a data header comment line and then datafor all nkinr reactions.

For each reaction the first data line includes :

nr // reaction number (12) ; in order from 1 to _nkinr
nkrd // number of reactions (12)

name [] // reaction name (II) {w}

and the second line has:

desc [] // reaction description (II) {w} may be blank

This isfollowed by nkrd lines ofreaction data:

prod[] // product species name (II)

src [] // source species name (II)

coef // reaction coefficient (R4)

The kinetic reactions section is terminated with:

-999 // used to check for a read error in the above data

Example:

1 1 kinetic reactions:
1 2 Kinrl
Kinetic reaction one.

Cl Cl 0.5

C2 C2 0.5

-999

Section 8: Filters

Filter data are read by the filter_read() function and saved by the filter_save() function. The

data are stored in the FLT DSC structures that are defined in contam.h for ContamW and

simdat.h for ContamX.

The filter section starts with:

_nfilt // number of filters (12)

This isfollowed by a data header comment line and then datafor all _nfiltfilters.

For each reaction the first data line includes:

36

Part 2 - Project File (.PRJ)

nr // filter number (12) ; in order from 1 to _nfilt
nspcs // number of species (12)

name [] // filter name (II) {w}

iiml the second line has:

desc [] // filter description (II) { W }
may be blank

This isfollowed by nspcs lines offilter efficiency data:

spcs [] // species name (II)

eff „ // filter efficiency (R4)

l he filter section is terminated with:

•99 // used to check for a read error in the above data

Example:

. 1 filters:
1 2 Fit 1

21 0.1

22 0.2
',99

j Section 9: Source/Sink Elements

Source/sink elements are read by the cselmt_read() function and saved by the cselmt_save(

)

function. The data are stored in the CSE_DAT structures that are defined in contain.h for

ContamW and simdat.h for ContamX. CSE DAT includes a pointer to the element specific data

structure.

The source/sink elements section starts with:

_ncse // number of source/sink elements

This isfollowed by a data header comment line and then datafor all ncse elements.

For each element the first data line includes:

nr // element number (12) ; in order from 1 to _ncse
spcs [] // species name (II)

ctype // element data type (string — 12)

element type names are stored in _cse_dnames in ctype
order

.

name [] // element name (II) {w}

and the second line has:

desc [] // element description (II) {w} may be blank

This isfollowed by one or more lines ofdata that depend on the element data type.

The introductory lines thatfollow give the type number
,
the program macro defined as that

number, the type namefrom_cse dnames, and the data structures to hold the data. The data

structures are defined in celmts.h in ContamW and selmts.h in ContamX. Type numbers can

change as long as the ordering in esse names and related arrays reflect that order.

Element type 0 [CS CCF] ”ccf' stored in structure CSE CCF.

The constant coefficient source model data of:

37

Part 2 - Project File (.PRJ)

G // generation rate [kg/s] (R4)

D // deposition rate [kg/s] (R4)

u_G // units of generation (12) {w}

u_D // units of deposition (12) {w}

Element type 1 [CSPRS] "prs" stored in structure CSEPRS.

The pressure driven source data of:

G // generation rate [kg/s] (R4)

x // pressure exponent [-] (R4)

u_G // units of generation (12) { W

}

Element type 2 [CS CUT] "cut " stored in structure CSE CUT.

The concentration cutoffmodel data of:
G // generation rate [kg/s] (R4

)

Co // cutof f concentration [kg/kg] (R4

u_G // units of generation [12]' {«}

u_C // units of concentration (12) {W}

Element type 3 [CS EDS] "eds" stored in structure CSEEDS.

The exponential decay model data of:

GO // initial generation rate [kg/s]

k // decay constant [1/s] (R4)

u_G // units of generation (12) <W}

u_k // units of time (12) {W}

Element type 4 [CS BLS] "bls
n
stored in structure CSEBLS.

The boundary layer diffusion model data of:

hm; // average film mass transfer coefficient [m/s] (R4)

rho; // film density of air [kg/m^3] (R4)

Kp; // partition coefficient (R4)

M; // adsorbent mass/unit area [kg/m^2] (R4)

u_h ; // units of hm (12) {w}

u_r; // units of rho (12) { W

}

u_M ; // units of M (12) { W

}

Element type 5 [CS BRS] "brs" stored in structure CSE BRS.

The burst source data of:

M // mass added to zone in one time step [kg] (R4)

u_M // units of mass (12) { W

}

The source/sink element section is terminated with:

-999 // used to check for a read error in the above data

Example:

6 1 source/sink elements:
1 Cl ccf si

38

Part 2 - Project File (,PRJ)

Constant Coefficient
110 0

2 Cl prs s2

Pressure driven

2

2 0

3 Cl cut s3

Cut-off Concentration
3 3 0 0

4 Cl eds s4

Decaying Source
4 4 0 0

5 Cl bis s5

Boundary Layer Diffusion
5 5 5 5 0 0 0

6 C2 brs s6

Burst
6 0

-999

Section 10: Airflow Elements

Airflow elements are read by the afelmt_read() function and saved by the afelmt_save(

)

function. The data are stored in the AFE DAT structures that are defined in contam.h for

ContamW and simdat.h for ContamX. AFE DAT includes a pointer to the element specific data

structure.

The airflow elements section starts with:

_nafe // number of airflow elements

This isfollowed by a data header comment line and then datafor all nafe elements.

For each element thefirst data line includes:

nr // element number (12) ; in order from 1 to _nafe
icon // icon used to represent flow path (R4) {w}

dtype // element data type (string — 12)

// element type names are stored in _afe_dnames in dtype order,

name [] // element name (II) {w}

and the second line has:

desc [] // element description (II) {w} may be blank

This isfollowed by one or more lines ofdata that depend on the element data type.

The introductory lines thatfollow give the type number, the program macro defined as that

number, the type namefrom afednames, and the data structures to hold the data. The data

structures are defined in celmts.h in ContamW and selmts.h in ContamX. Type numbers can

change as long as the ordering in afe dnames and related arrays reflect that order.

Element type 0 [PLORFC] "plr orfc" stored in structure PLRORF.

The orifice data consist of:

lam // laminar flow coefficient (R4)

turb // turbulent flow coefficient (R4)

expt // pressure exponent (R4)

39

Part 2 - Project File (.PRJ)

area // actual area [m
A
2] (R4

)
{X}

dia // hydraulic diameter [m] (R4

)

{X}

coef // flow coefficient (R4
)

{X}

Re // laminar/turbulet transition Reynolds number [-] (R4) { X

}

u_A // units of area (12) {x}

U_D // units of diameter (12) {X}

/. lenient type 1 [PLLEAK1] "plrleakl" stored in structure PLR LEAK.

Element type 2 [PLLEAK2] "plr_leak2” stored in structure PER LEAK.

Element type 3 [PL LEAK3] "plrjeak3
n
stored in structure PLR LEAK.

I he leakage area data consist of:

lam // laminar flow coefficient (R4)

turb // turbulent flow coefficient (R4)

expt // pressure exponent (R4

)

coef // flow coefficient (R4

)

{w)

pres // reference pressure drop [Pa] (R4

)

{w}

areal // leakage area per item [m"2] (R4) {w}

area2 // leakage area per unit length [m"2 / m]

area3 // leakage area per unit area [m"2 /m"2]

u_Al // units of areal [m*2] (12) {W}

u_A2 // units of area2 [m^2/m] (12) {W}

u_A3 // units of area3 [m"2/m" 2] (12) {w}

u dP // units of pressure (12) {»}

(R4)

(R4

)

{W}

{W}

Element type 4 [PL CONN] "p/r conn" stored in structure PLR CONN.

The (ASCOS compatible) connection data consist of:

lam // laminar flow coefficient (R4)

turb // turbulent flow coefficient (R4

expt // pressure exponent - 0.5 (R4

)

area // actual area [m"2] (R4
)

{W}

coef // flow coefficient (R4
)

{W}

u_A // units of area (12)'
{w}

Element type 5 [PL QCN] "plr cjcn" stored in structure PLR QCN.

The volume flow power/aw data consist of:

lam // laminar flow coefficient (R4)

turb // turbulent flow coefficient (R4)

expt // pressure exponent (R4)

Element type 6 [PL FCN] "plrJ~cn” stored in structure PLR FCN.

The massflow powerlaw data consist of:

lam // laminar flow coefficient (R4)

turb // turbulent flow coefficient (R4)

expt // pressure exponent (R4)

40

Part 2 - Project File (.PRJ)

Element type 7 [PL TEST1] "pinJest1 " stored in structure PLRTEST1

.

The single test point powerlaw data consist of:

lam // laminar flow coefficient (R4)

turb // turbulent flow coefficient (R4)

expt // pressure exponent (R4)

dP // pressure drop [Pa] (R4) {w}

Flow // flow rate [kg/s] (R4) {w}

u_P // units of pressure drop {w}

u_F // units of flow (12) {w}

Element type 8 [PLJTEST2] "plr test2" stored in structure PLRTEST2.

The two test points powerlaw data consist of:

lam // laminar flow coefficient (R4

)

turb // turbulent flow coefficient (R4

)

expt // pressure exponent (R4)

dPl // point 1 pressure drop [Pa] (R4

)

{w}

FI // point 1 flow rate [kg/s] (R4
)

{W}

dP2 // point 2 pressure drop [Pa] (R4

)

{w}

F2 // point 2 flow rate [kg/s] (R4
)

{W}
\

—

1

ft1d // units of pressure drop (12) {w}

u_Fl // units of flow (12) { W

}

u_P2 // units of pressure drop (12) {w}

u_F2 // units of flow (12) {w}

Element type () [PLCRACK] "plr crack" stored in structure PLRCRACK.

The crack power!aw data consist of:

lam // laminar flow coefficient (R4)

turb // turbulent flow coefficient (R4

expt // pressure exponent (R4)

length // crack length [m] (R4
)

{w}

width // crack width [m] (R4) {w}

u L // units of length (12) {w}

u W // units of width (12) {w}

Element type 10 [PL STAIR] "plr stair" stored in structure PLR STAIR.

The stairwell powerlaw data consist of:

lam // laminar flow coefficient (R4)

turb // turbulent flow coefficient (R4)

expt // pressure exponent (R4

)

Ht // distance between levels [m] (R4) {w}

Area // cross-sectional area [rrh2] (R4) {w}

peo // density of people [pers/m A
2] (R4

)
{w}

tread // 1 = open tread 0 = closed { W

}

u_A // units of area (12
)

{w}

U_D // units of distance (12) { W}

Element type 11 [PL SHAFT] "plr shaft" stored in structure PLRJSHAFT.

41

Part 2 - Project File (.PRJ)

The shaftpowerlaw data consist of:

lam // laminar flow coefficient (R4)

turb // turbulent flow coefficient (R4)

expt // pressure exponent (R4

)

Ht // distance between levels [m] (R4

Area // cross-sectional area [m"2] (R4)

Perim // perimeter [m] (R4) {w}

rough // roughness [m] (R4) {w}

u_A // units of area (12) {w}

U_D // units of distance (12) {W}

u_P // units of perimeter (12) {W}

u_R // units of roughness (12) {W}

Element type 12 [PLBDQ] "plrbdq" stored in structure PER BDQ.

The volumeflow powerlaw backdraft damper data consist of:

lam // laminar flow coefficient {R4}

Cp // turbulent flow coefficient (dP > 0)
{R4}

xp // pressure exponent (dP > 0)
{R4}

Cn // turbulent flow coefficient (dP < 0)
{R4}

xn // pressure exponent (dP < 0)
{R4}

Element type 13 [PL BDF] "plrbdf' stored in structure PER BDF.

The massflow powerlcnv backdraft damper data consist of:

lam // laminar flow coefficient {R4}

Cp // turbulent flow coefficient (dP > 0

xp // pressure exponent (dP > 0) { R4

}

Cn // turbulent flow coefficient (dP < 0

xn // pressure exponent (dP < 0) {R4}

Element type 14 [QFRjQAB] "qfrqab" stored in structure QFRQAB.

The volume flow quadratic data consist of:

a // dP = a*Q + b*Q*Q {R4}

b // { R4

}

Element type 15 [QFR QAF] "qfrJab" stored in structure QFRFAB.

The mass flow quadratic data consist of:

a // dP = a*F + b* F* F {R4}

b // { R4

}

Element type 16 [QFR CRACK] "qfr crack" stored in structure QFR CRACK.

The crack massflow quadratic data consist of:
a // dP = a* F + b*F*F {R4}

b // {R4}

length // crack length [m] {R4}

width // crack width [m] {R4}

depth // crack depth [m] {R4}

42

Part 2 - Project File (.PRJ)

nB // number of bends
u _L // units of length
u _W // units of width
u _E> // units of depth

Element type 1 7 [QFRTEST2] "qfr_test2" stored in structure QFR TEST2.

The two test points mass flow quadratic data consist of:

a // dP = ,a*F + b*F*F
{ R4 }

b // {R4

}

dPl // point 1 pressure drop [Pa] (R4

)

{w}

FI // point 1 flow rate [kg/s] (R4 > {w}

dP2 // point 2 pressure drop [Pa] (R4) {w}

F2 // point 2 flow rate [kg/s] (R4
)

{w}

U_P1 // units of pressure drop (12) {w)

u_Fl // units of flow (12
)

{w}

u_P2 // units of pressure drop (12) {w}

u_F2 // units of flow (12
)

{w}

Element type 18 [DR DOORJ "dor door” stored in structure AFE DOR.

The single opening doorway data consist of:

lam // laminar flow coefficient (R4

)

turb // turbulent flow coefficient (R4

)

expt // pressure exponent (R4)

dTmin // minimum temperature difference for two-way flow
ht // height of doorway [m] (R4)

wd // width of doorway [m] (R4)

cd // discharge coefficient
u T // units of temperature (12) {w}

U_H // units of height (12) {
W

}

u_W // units of width (12) {w}

[c] (R4)

Element type 19 [DR PL2] "dor_pl2 " stored in structure DRPL2.

The double opening doorway data consist of:

lam // laminar flow coefficient (R4

)

turb // turbulent flow coefficient (R4

)

expt // pressure exponent (R4)

dH // distance above
|

below midpoint [m] {R4}

ht // height of doorway [m] (R4) { W in v . 2.0}
wd // width of doorway [m] (R4) {w}

cd // discharge coefficient [-] (R4) { W>
u_H // units of height (12) {w}

u W // units of width (12) {w}

Element type 20 [FN CMF] 'fan cmf stored in structure AFEjCMF.

The constant mass flowfan data consist of:

Flow // design flow rate [kg/s] (R4)

u_F // units of flow (12) { W

}

43

Part 2 - Project File (.PRJ)

Element type 21 [FNjCVF] "fan cvj" stored in structure AFEjOVF.

The constant volume flowfan data consist of:

Flow // design flow rate [m^3/s] (R4)

u_F // units of flow (12) {w}

Element type 22 [FN FANJ 'fan fan" stored in structure AFE FAN.

The first line ofperformance curvefan data consists of:

laminar flow coefficient (R4)

turbulent flow coefficient (R4)

pressure exponent (R4)

reference fluid density [kg/m^3] {R4}

free delivery flow (prise = 0) [kg/s] {R4}

shut-off pressure (flow = 0) [Pa] {R4}

fan is off if (RPM/rated RPM) < off {R4}

lam //

turb //

expt //

rdens //

fdf //

sop //

off //

The second line consists of:

fpc [4]

npt s

Sarea
u_Sa
The next
mF

u_mF
dP

u_dP
rP

u rP

// fan performance polynomial coefficients

// number of mesaured data points (12) { W

}

// shut-off orifice area [m^2] { R4 }
{ W

}

// units of shut-off area (12) {w}

npts lines consists of

:

// measured flow rates [kg/s] (R4) { W

}

// units of measured flows (12) {w}

// measured pressure rises [Pa] (R4) {w}

// units of pressure rises (12) {w}

// revised pressure rises [Pa] (R4) { W

}

// units of revised pressures (12) { W

}

{R4}

The airflow element section is terminated with:

-999 // used to check for a read error in the above data

Example:

24 ! flow | duct elements:
1 24 dor_door DR_DOOR
DR_DOOR Single opening w/ 2 -way flow
0.0741669 1.76494 0.5 0.01 2 0.8 0.78 000

2 24 dor_pl2 DR_PL2
DR_PL2 Two -opening model
0.0185417 0.882469 0.5 0.444444 2 0.8 0.78 0 0

3 30 fan_cmf FN_CMF
FN_CMF Constant mass flow fan model
1 0

4 29 fan_cvf FN_CVF
FN_CVF Constant volume flow fan model
1 0

5 30 fan_fan FN_FAN
FN_FAN Cubic polynomial fan model
7 . 2e- 006 0.00848528 0.5 1.2041 -0.377789 0.0286444 0.1

44

Part 2 - Project File (.PRJ)

0.0286444 0.0745766 -0.00327397 5.29862e-005 4 0.01 0

1 0 0.1 0 0.1 0

10 0 0.5 0 0.5 0

30 0 0.75 0 0.75 0

35 0 0.9 0 0.9 0

6 25 plr_conn PLR_CONN
ASCOS Connection element. Analysis of Smoke Control of Systems ...

8 . 38053e-008 0.000188562 0.5 0.0002 0.666667 3

7 23 plr_crack PLR_CRACK
Crack element using powerlaw relationship.
1 . 84e- 008 0.000861959 0.68394 2 0.002 0 4

8 23 plr_f cn PLR_FCN
Power law for mass flow.

3 . 52946e-005 0.01 0.5

9 23 plr_leakl PLR_LEAK1
Leakage element (per item)

.

2 . 4e- 008 8 . 48528e- 005 0.5 0.6 10 0.0001 0 0 2 2 2 0

10 23 plr_leak2 PLR_LEAK2
Leakage element (per unit length)

.

3 . 8063e-009 6.00712e-005 0.65 0.6 10 0 0.0001 02220
11 23 plr_leak3 PLR_LEAK3
Leakage element (per unit area)

.

3 . 8063e-009 6.00712e-005 0.65 0.6 10 0 0 0.0001 2221
12 23 plr_orf c PLR_ORFC
Orifice element.
2 . 4e-005 0.00848528 0.5 0.01 0.1 0.6 30 0 0

13 23 plr_qcn PLR_QCN
Power law for volume flow.

3 . 52946e- 005 0.01 0.5

14 23 plr_shaf t PLR_SHAFT
Shaft powerlaw model.

0.306565 30.9005 0.508447 3 6 10 0.1 0000
15 23 plr_stair PLR_STAIR
Stairwell powerlaw model.

0.146333 2.83196 0.5 3 12.5 0100
16 23 plr_testl PLR_TEST1
Single point test data element

.

2.47343e-005 0.0086575 0.5 4 0.019 0 0

17 23 plr_test2 PLR_TEST2
Two point test data element.
6 . 35906e-005 0.00913228 0.461488 4 0.019 10 0.029 0000

18 23 plr_bdf PL_BDF
PL_BDF Backdraft Damper based on mass flow rate
3 . 52946e-005 0.01 0.5 0.0001 0.5

19 23 plrjodq PL_BDQ
PL_BDQ Backdraft Damper based on volume flow rate
3 . 52 946e- 005 0.01 0.5 0.0001 0.5

20 23 qfr_crack QF_CRACK
This description is the maximum allowable length that CONTAMW alio
565.645 90835.5 2 0.002 0.05 2042

21 23 qfr_fab QF_FAB
QF FAB Quadratic mass flow model

45

Part 2 - Project File (.PRJ)

1234.12 123456
22 23 qfr_qab QF_QAB
QF_QAB Qadratic volume flow model
1 1234.12

23 23 qfr_test2 QF_TEST2
QF_TEST2 Quadratic test data (2 points)
-44.6461 13430.1 4 0.019 10 0.029 0000

24 30 fan_cmf a

1 0

-999

Section 11: Duct Elements

Duct elements are read by the afelmt_read() function with the duct flag set to 1 and saved by the

afelmt_save() function. The data are stored in the AFEDAT structures that are defined in

contam.h for ContamW and simdat.h for ContamX. AFE DAT includes a pointer to the element

specific data structure.

The duct elements section starts with:

_ndfe // number of duct flow elements

This isfollowed by a data header comment line and then datafor all _ndfe elements.

For each element the first data line includes:

nr // element number (12) ; in order from 1 to _nafe
icon // icon used to represent flow path ((R4) {w}

dtype // element data type (string 12)

// element type names are stored in _afe_dnames in dtype order,

name [] // element name (II) { W

}

and the second line has:

desc [] // element description (II) { W }
may be blank

This isfollowed by two or more lines ofdata that depend on the element data Wpe.

The introductory lines thatfollow give the type number, the program macro defined as that

number, the type namefrom afednames, and the data structures to hold the data. The data

structures are defined in celmts.h in ContamW and selmts.h in ContamX. Type numbers can

change as long as the ordering in afe dnames and related arrays reflect that order.

Element type 23 [DD DWC] "dct dwc” stored in structure DEF DWC.

The Darcy-Colebrook data consist of:

hdia // hydraulic diameter [m] (R4

)

area // cross sectional area [m
A
2] (R4)

ed // relative roughness (rough/hdia) (R4)

lam // laminar total loss coefficient per [m]

rough // roughness dimension [m] (R4

)

u_R // units for roughness (12) {W}

Element type 24 [DDPLRJ "dct_plr” stored in structure DFEORF.

The orifice data consist of:

46

Part 2 - Project File (.PRJ)

lam // laminar flow coefficient (R4)

turb // turbulent flow coefficient (R4)

expt // pressure exponent (R4

)

area // actual area [m^2] (R4
)

{X}

dia // hydraulic diameter [m] (R4

)

{x}

coef // flow coefficient (R4
)

{X}

Re // laminar/turbulet transition Reynolds number [-] (R4) { X

}

u_A // units of area (12) {x}

U_D // units of diameter (12) {X}

Element type 26 [DD QCN] "dctqcn" stored in structure DFE OCN.

The volume flow powerlaw data consist of:

lam // laminar flow coefficient (R4)

turb // turbulent flow coefficient (R4)

expt // pressure exponent (R4)

Element type 25 [DD FCN] "dctJen" stored in structure DFE FCN.

The mass flow powerlaw data consist of:

lam // laminar flow coefficient (R4)

turb // turbulent flow coefficient (R4)

expt // pressure exponent (R4)

Element type 28 [DD CMF] "dct cmfi' stored in structure DFE CMF.

The constant massflowfan data consist of

Flow // design flow rate [kg/s] (R4)

u_F // units of flow (12) { W

}

Element type 29 [29 CVF] "detevf stored in structure DFECVF.

The constant volume flow fan data consist of:

Flow // design flow rate [m
A
3/s] (R4)

u_F // units of flow (12) { W

}

Element type 27 [DD FAN] "dctffan" stored in structure DFE FAN.

The first line ofperformance curvefan data consists of:

lam // laminar flow coefficient (R4)

turb // turbulent flow coefficient (R4)

expt // pressure exponent (R4)

rdens // reference fluid density [kg/m^3] {R4}

fdf // free delivery flow (prise = 0) [kg/s] {R4}

sop // shut-off pressure (flow = 0) [Pa] {R4}

off // fan is off if (RPM/rated RPM) < off {R4}

The second line consists of:

fpc [4] // fan performance polynomial coefficients {R4}

npts // number of mesaured data points (12) { W

}

47

Part 2 - Project File (.PRJ)

Sarea // shut-off orifice area [m^2] {R4} {w}

u_Sa // units of shut-off area (12) {w}

The next npts lines consists of:

mF // measured flow rates [kg/s] (R4) {w}

u_mF // units of measured flows (12) { W

}

dP // measured pressure rises [Pa] (R4) { W

}

u_dP // units of pressure rises (12) { W

}

rP // revised pressure rises [Pa] (R4) {w}

u_rP // units of revised pressures (12) { W

}

Element type 30 [DDBDQ] "dctbdq" stored in structure DFE BDQ.

The volumeflow powerlaw backdraft damper data consist of:

lam // laminar flow coefficient { R4

}

Cp // turbulent flow coefficient (dP > 0

xp // pressure exponent (dP > 0) {R4}

Cn // turbulent flow coefficient (dP < 0

xn // pressure exponent (dP < 0) { R4

}

Element type 31 [DD BDF] "dctjbdf stored in structure DFE BDF.

The massflow powerlaw backdraft damper data consist of:

lam // laminar flow coefficient {R4}

Cp // turbulent flow coefficient (dP > 0)
{R4}

xp // pressure exponent (dP > 0)
{ R4

}

Cn // turbulent flow coefficient (dP < 0)
{R4}

xn // pressure exponent (dP < 0)
{R4}

Each duct element

Hdia //
perim //
area //

ma j or //
minor //
As //
Qr //
Pr //
CL //

Prs //

shape //
u_D //
u_P //
u_A //
u mj //
u mn //
u_Qr //
u Pr //

then has thefollowing geometry and leakage data stored in structure DUCT.
hydraulic diameter [m] {R4}

perimeter [m] {R4}

cross sectional area [m^2] {R4}

major dimension of rectangular or oval duct [m] {R4}

minor dimension of rectangular or oval duct [m] {R4}

duct segment surface area [m
A
2] {R4}

duct leakage rate at Pr [m
A
3/m

A
2] {R4}

dPstatic for leakage rate [Pa] {R4}

ASHRAE leakage class number {R4}

standard dP for leakage rate [Pa] {R4}

0 = circle, 1 = rectangle, 2 = oval, 3 = other (12) {w}

units for diameter (12) {w}

units for perimeter (12) { W

}

units for area (12) {w}

12) {W}

12
)

{w}

{w}

{w}

units for major dimension
units for minor dimension
units for leakage rate (12

units for standard dP (12)

The duct element section is terminated with:

-999 // used to check for a read error in the above data

48

Part 2 - Project File (.PRJ)

Example:

•
. flow | duct elements:

. 13 dct_dwc Dctl
. -t one

.

• -? - 0 0 5 0 4

.2 0.628319 0.0314159 0.2 0.2 0 0 250

4 4 2 4 4 0 0

. 23 dct_plr Dct2

;ct two

.. . 4 e - 0 0 5 0.00848528 0.5 0.01 0.1 0.6 0 0

.2 0.628319 0.0314159 0.2 0.2 0 0 250

4 4 2 4 4 0 0

23 dct_fcn Dct3
' uct three

.

3 . 52946e-005 0.01 0.5

.2 0.628319 0.0314159 0.2 0.2 0 0 250

34424400
4 23 dct_qcn Dct4
Duct four

3 . 52946e- 005 0.01 0.5

0.2 0.628319 0.0314159 0.2 0.2 0 0 250

04424400
5 23 dct_fan Dct5
Duct five
7 . 2e- 006 0.00848528 0.5 1.2041 4.53711 764.429 0.1

764.429 -22.0238 28.2143 -13.3333 5 0.01 0

0 0 765 0 765 0

1 0 755 0 755 0

2 0 730 0 730 0

3 0 590 0 590 0

4 0 275 0 275 0

0.2 0.628319 0.0314159 0.2 0.2 0 0 250

04424400
6 23 dct_cmf Dct6
Duct 6

1 0

0.2 0.628319 0.0314159 0.2 0.2 0 0 250

04424400
7 23 dct_cvf Dct7
Duct seven
1 0

0.2 0.628319 0.0314159 0.2 0.2 0 0 250

04424400
8 23 dct_bdq Dct8
Duct eight
3 . 52946e- 005 0.01 0.5 0.0001 0.5

0.2 0.628319 0.0314159 0.2 0.2 0 0 250

04424400
9 23 dct_bdf Dct9
Duct nine
3 . 52946e-005 0.01 0.5 0.0001 0.5

0.2 0.628319 0.0314159 0.2 0.2 0 0 250

49

Part 2 - Project File (.PRJ)

04424400
-999

Section 12: Control Nodes

Control node data are read by the ctrl_read() function and saved by the ctrl_save() function.

The data are stored in the CTRL DSC structures that are defined in contain.h for ContamW and

the CT NODE structures defined simdat.h for ContamX.

The control nodes section starts with:

nctrl / / number of control nodes 12

This isfollowed by a data header comment line and then datafor all nctrl control nodes.

For each control node the first data line includes:

nr // node (SketchPad) number (12); in order from 1 to _nzone
type // node data type (string — 12)

Node type names are stored in _ctrl_names in type order,
seqnr // computation sequence number (12); set in ContamW
flags // flags for offset & scale and time constant (U2)

nl // SketchPad number of input node #1 (12)

n2 // SketchPad number of input node #2 (12)

name [] // element name (II) { W

}

and the second line has:

desc [] // control node description (II) {w} may be blank

This may befollowed by one more line ofdata that depends on the node type.

Node type 0 [CTSNS] "sns" stored in structure SENSOR {Wf or SNSDAT {X}.

offset // offset value (R4)

scale // scale value (R4)

tau // time constant (R4)

oldsig // signal at last time step - for restart (R4)

source // index of source (source not defined at read time) (12)

type // type of source: l=zone, 2=path, 3=junction, 4=duct.

measure // 0=contaminant
, l=temperature ,

2=flow rate, 3=dP ...

species [] // species name [II] ; convert to pointer

Node type 1 [CT SCH] "sch" stored in structure SCHDAT.
ps // week schedule index (12) ; converted to pointer

Node type 2 [CT_SET] "set" stored in structure SETDAT

.

value // constant value (R4)

Node type 3 fCT CVF] ”cvf' stored in structure CDVDAT. {Contain 2.1

}

Name [] // name of the value read from the Continuous Values file

Node type 4 [CT DVF] ”dvf' stored in structure CDVDAT. {Contain 2. 1}

Name [] // name of the value read from the Discrete Values file (II

Node type 5 [CT LOG] "log” stored in structure LOGDAT.
Offset // offset value (R4)

Scale // scale value (R4)

header [] // header string (II)

units [] // units string (II)

(12

(12

II

50

Part 2 - Project File (.PRJ)

udef // true if using default units (12) {w}

Node type 6 [CT PAS] "pas" has no additional data.

Node type 7 [CTMOD] "mod" stored in structure MOD.
offset // offset value (R4)

scale // scale value (R4)

Node type 8 [CT HYS] "hvs" stored in structure HYSDAT.
slack; // hysteresis parameter (R4)

slope // 1.0 / (1.0 - slack) (R4)

oldsig // prior output signal (R4)

Node type 9 [CT_ABS] "abs" has no additional data.

Node type 10 [CT BIN] "bin" has no additional data.

Node type 11 [CT DLS] "dls" stored in structure CDVDAT. {Contain 2.1}

dsincr // day schedule number for increasing signal (12)

dsdecr // day schedule number for decreasing signal (12)

Node type 12 [CTDLX] "dlx" stored in structure CDVDAT. {Contain 2.1

}

tauincr // time constant for increasing signal [s] (14)

taudecr // time constant for decreasing signal [s] (14)

Node type 13 [CT INTJ "int" has no additional data.

Node type 14 [CTRA V] "rav" stored in structure CDVDAT. {Contain 2.1}

tspan // time span for the running average [s] (14)

Node type 15 [CT INV] "inv" has no additional data.

Node type 16 [CT AND] "and" has no additional data.

Node type 17 [CTOR] "od" has no additional data.

Node type 18 [CT XOR] "xor" has no additional data.

Node type 19 [CT ADD] "add" has no additional data.

Node type 20 [CTSUB] "sub" has no additional data.

Node type 21 [CTMUL] "mill" has no additional data.

Node type 22 [CTDIV] "div " has no additional data.

Node type 23 [CT SUM] "sum" stored in structure SUMDAT.

Node type 24 [CT_A VG] "avg" stored in structure SUMDAT.

Node type 25 [CT MAX] "max" stored in structure SUMDAT.

Node type 26 [CT MIN] "min" stored in structure SUMDAT.
nval // number of values to be processed (12)

pc . .
. // indices of nval control nodes (12)

Node type 27 [CT LLSJ "lIs" has no additional data.

Node type 28 [CTJJLS] "ids" has no additional data.

Node type 29 [CTSUM] "sum" stored in structure BANDAT.

51

Part 2 - Project File (.PRJ)

\ode type 30 [CT_A VG] "avg" stored in structure BANDAT.
: »:id // width of bans (R4)

\ode type 31 [CTLLC] "lie” has no additional data.

\ode type 32 [CT_ULC] "ulc" has no additional data.

\<>de type 33 [CTPC1] "pel” stored in structure PCDAT.
// proportional gain factor (R4)

\ode type 34 [CTPIC] "pic" stored in structure PICDAT.
: // proportional gain factor (R4)

; // integral gain factor (R4)

Idsig // prior output signal - for restart (R4)

Lderr // prior error value - for restart (R4)

The control nodes section is terminated with:

*99 // used to check for a read error in the above data

Example:

3 1 control nodes

:

typ seq f n cl

1 sns 100 0

zone sensor
0100110 Cl

2 sns 200 0

zone sensor
0100110 C2

3 log 501 2

report
Oil MassFraction
4 log 601 1

report

Oil MassFraction
5 sns 300 0

path sensor
0100322 none
6 sns 400 0

path sensor
0100422 none
7 log 701 5

report
Oil FlowRate kg/s
8 log 801 6

report
Oil FlowRate kg/s

-999

c2 s# data
0 <none>

0 <none>

0 Z5C2

kg/kg
0 Z5C1

kg/kg
0 <none>

0 <none>

0 Path-L

0 Path-R

j Section 13: Simple Air Handling System (AHS)

AHS data are read by the system_read() function and saved by the system_save() function. The

data are stored in the AHS_DSC structures that are defined in contain.h for ContamW and

simdat.h for ContamX.

52

Part 2 - Project File (.PRJ)

The AHS section starts with:

_nahs // number of AHS (12)

This isfollowed by a data header comment line and then data for all nahs systems.

For each AHS the first data line includes:

nr // AHS number (12) ; in order from 1 to _nahs
zone_r // return zone number (12)

zone_s // supply zone number (12)

path_r // recircultaion air path number (12)

path_s // outdoor air path number (12)

path_x // exhaust path number (12)

and the second line has:

desc [] // AHS description (II) { W }
may be blank

The AHS section is terminated with:

-999 II used to check for a read error in the above data

Example:

1 ! simple AHS

:

! # zr# zs# pr# ps# px# name
1 2 3 29 30 31 Ahsl

Simple Air Handling System #1
-999

Section 14: Zones

Zone data are read by the zone_read() function and saved by the zone_save() function. The

data are stored in the ZONE DSC structures that are defined in contain.h for ContainW and

simdat.h for ContamX.

The zone section starts with:

nzone / / number of zones 12)

This isfollowed by a data header comment line and then datafor all nzone zones.

For each zone the data line includes:

zone number (12) ; in order from 1 to _nzone
zone flags - bits defined in contam.h (U2)

week schedule index (12) ; converted to pointer
control node index (12); converted to pointer
kinetic reaction index (12); converted to pointer
building level index (12) ; converted to pointer
zone height [m] (R4)

zone volume [m
A
3] (R4)

initial zone temperature [K] (R4)

initial zone pressure [Pa] (R4)

zone name (II) { W

}

units of height (12) {w}

units of volume (12) {w}

units of temperature (12) { W

}

units of pressure (12) {w}

nr II

flags II

ps II

pc II

pk II :

Pi II

relHt II

Vol II

TO II

P0 II

name [] II

u Ht //
'

u_V //
'

u T //
'

u_P //
'

The zones section is

53

Part 2 - Project File (.PRJ)

-999 // used to check for a read error in the above data

Example:

7 ! zones

:

z# f s# c# k# 1# relHt Vol TO P0 name u

.

1 3 0 0 0 2 0 . 000 5 . 00001 296.15 0 z5 0 2 0 0

2 10 0 0 0 - 2 0 . 000 2 296 . 15 0 ahsR 0 2 0 0

3 10 0 0 1 2 0 . 000 1 296 . 15 0 ahsS 0 2 0 0

4 3 0 0 0 1 0 . 000 0 . 99999 296 . 15 0 zl 0 2 0 0

5 3 0 0 0 1 0 . 000 2 293 . 15 0 z2 0 2 0 0

6 3 0 0 0 1 0 . 000 3 296 . 15 0 z3 0 2 0 0

7 3 0 0 0 1 0 . 000 4 296 . 15 0 z4 0 2 0 0

-999

Section 15: Initial Zone Concentrations

Initial zone contaminant mass fractions are read by the zone_read() function and saved by the

zone_save() function. The mass fractions are stored in the ZONE DSC structures that are

defined in contam.h for ContamW and they are stored in an array in ContamX.

The zone contaminants section starts with:

nn // number of mass fraction that follow (14)

nn should equal nzone * nctm.

This isfollowed by nzone lines in orderfrom 1 to nzone.

Each data line contains nctm massfractions (R4) in contaminant order.

nr

CCO [i] [1] // initial mass fraction (R4) of zone i, contaminant 1

CCO [i] [_nctm] // initial mass fraction (R4) of zone i, contaminant _nctm

The initial zone concentrations section is terminated with:

-999 // used to check for a read error in the above data

Example:

14 !

! Z#

1

2

3

4

5

6

7

-999

initial concentrations:
Cl

1 . 000e+000
1 . 000e+000
1 . 000e+000
1 . 000e+000
1 . 000e+000
1 . 000e+000
1 . 000e+000

C2

2 . 000e+000
2 . 000e + 000

2 . 000e + 000

2 . 000e + 000

2 . 000e + 000

2 . 0 0 0e + 0 0 0

2 . 000e+000

Section 16: Airflow Paths

Path data are read by the path_read() function and saved by the path_save() function. The data

are stored in the PATH DSC structures that are defined in contam.h for ContamW and simdat.h

for ContamX.

The path section starts with:

54

Part 2 - Project File (PRJ)

_npath // number of paths (12)

This isfollowed by a data header comment line and then datafor all jipath paths.

For each path the data line includes:

path number (12) ; in order from 1 to _npath
airflow path flag values (12)

zone N index (12) ; converted to pointer
zone M index (12) ; converted to pointer
flow element index (12) ; converted to pointer
filter index (12) ; converted to pointer
wind coefficients index (12); converted to pointer
AHS index (12) ; converted to pointer
schedule index (12) ; converted to pointer
control node index (12); converted to pointer
level index (12); converted to pointer
X-coordinate of envelope path [m] (R4) {Contam 2.1}
Y-coordinate of envelope path [m] (R4) {Contam 2.1}
height relative to current level [m] (R4)

element multiplier (R4)

constant wind pressure [Pa] (pw==NULL) (R4)

wind speed(?) modifier (pw!=NULL) (R4)

wall azimuth angle (pwi=NULL) (R4)

AHS path flow rate [kg/s] (pw==NULL) (R4)

flow or pressure limit - maximum (R4) {w}

flow or pressure limit - minimum (R4) {w}

icon used to represent flow path (Ul) {w}

// positive flow direction on sketchpad (Ul) {w}

units of height (12) {w}

units of pressure difference (12) {w}

units of flow (12) {w}

nr //
flags //

pzn //
pzm //

pe //

pf //
pw //

pa //

ps //

pc //
pld //

X //

Y //

relHt //

mult //

wPset //
wPmod //
wazm //

Fahs //

Xmax //

Xmin //
icon //

dir //
u_Ht //
u_dP //
u_F //

The paths section is terminated with:

-999 // used to check for a read error in the above data

Example:

31 ! flow paths:
P# f n# m# e# f# w# a# s# c# 1# X Y relHt mult wPset ’wPmod wazm Fahs .

.

1 8 1 2 0 0 0 1 0 0 2 0 . 000 0 . 000 0 . 000 1 0 0 0 2 0 0 129 5 0 0 0 0

2 8 3 1 0 0 0 1 0 0 2 0 . 000 0 . 000 0 . 000 1 0 0 0 1 0 0 128 2 0 0 0 0

3 7 -1 1 12 0 1 0 0 0 2 0 . 000 0 . 000 1 . 500 1 0 0.36 180 0 0 0 30 1 0 0 0 0

4 7 -1 1 12 0 2 0 0 0 2 0 . 000 0 . 000 1 . 500 2 0 0 .36 180 0 0 0 23 1 0 0 0 0

5 7 -1 4 13 0 2 0 0 0 1 19 . 000 17 . 000 1 . 500 1 0 0 .36 0 0 0 0 23 4 0 0 0 0

6 6 -1 4 8 0 0 0 0 0 1 21 . 000 17 . 000 1 . 500 1 0 0 0 -1 0 0 23 4 0 0 0 0

30 38 -1 3 0 1 0 0 0 0 2 17 .000 5 . 000 1 . 500 1 0 0 0 -1 0 0 0 6 0 0 0 0

31 64 2 -1 0 0 0 0 0 0 2 0 . 000 0 . 000 1 . 500 1 0 0 0 -1 0 0 0 6 0 0 0 0

-999

Section 17: Duct Junctions

Junction data are read by the jct_read() function and saved by the jct_save() function. The data

are stored in the JCT DSC structures that are defined in contam.h for ContamW and simdat.h for

ContamX.

Part 2 - Project File (.PRJ)

Thejunction section starts with:

_njct // number of junctions (12)

This isfollowed by a data header comment line and then datafor all njctjunctions.

For eachjunction the data line includes:

nr

flags

pzn
pw
dnr

pk
ps

pc

pld
X

Y

relHt
TO

PO

wPset
wPmod
wazm
u_Ht
u_T
u_dP
icon
ddir
fdir

Thejunctions section is terminated with:

-999 // used to check for a read error in the above data

Example:

19 ! duct junctions:
! J# f t z# w# dct k# s# c# 1# X Y relHt TO PO wPset wPmod wazm u. .

133-10 00002 17.000 21.000 0.000 296.15 000-10020 162 2 2

230-10 00002 0.000 0.000 0.000 296.15 000-10020 158 0 0

19 3110 00002 0.000 0.000 0.000 296.15 000-10020 162 1 1

-999

// zone number (12) ; in order from 1 to _nzone
// zone flags - bits defined in contam.h (U2)

// surrounding zone index (12) ; converted to pointer

// wind coefficients index (12); converted to pointer
// duct segment number - use during read (12)

// kinetic reaction index (12); converted to pointer
// schedule index (12) ; converted to pointer

// control node index (12) ; converted to pointer
// level index (12) ; converted to pointer

// X-coordinate of ambient terminal [m] (R4) {Contam 2.1}

// Y-coordinate of ambient terminal [m] (R4) {Contam 2.1}

// height relative to current level [m] (R4)

// initial junction temperature [K] (R4)

// initial junction pressure [Pa] (R4)

// constant wind pressure [Pa] (pw==NULL) (R4)

// wind speed (?) modifier (pw!=NULL) (R4)

// wall azimuth angle (pwi=NULL) (R4)

// units of height (12) {w}

// units of temperature (12) {w}

// units of pressure difference (12) {w}

// icon used to represent flow path (Ul) {w}

// direction of terminal duct - to show wP (Ul) {w}

// positive flow direction - to show flow (Ul) {w}

Section 18: Initial Junction Concentrations

Initial junction contaminant mass fractions are read by the zone_read() function and saved by

the zone_save() function. The mass fractions are stored in the ZONE DSC structures that are

defined in contam.h for ContamW and they are stored in an array in ContamX.

The zone contaminants section starts with:

nn // number of mass fraction that follow (14)

nn should equal nzone * nctm. This isfollowed by nzone lines in orderfrom zone 1 to zone

nzone.

56

Part 2 - Project File (,PRJ)

Each data line contains nctm massfractions (R4) in contaminant order.

The initial zone concentrations section is terminated with:

-999 // used to check for a read error in the above data

Example:

38 ! initial concentrations:
! J# Cl C2

1 1 . 000e + 000 2 . 000e + 000

2 1 . 000e+000 2 . 000e + 000

3 1 . 000e+000 2 . 000e + 000

4 1 . 000e+000 2 . 000e+000
5 1 . 000e+000 2 . 000e + 000

6 1 . 000e+000 2 . 000e+000
7 1 . 000e + 000 2 . 000e + 000

8 1 . 000e+000 2 . 000e+000
9 1 . 000e+000 2 . 000e+000

10 1 . 000e + 000 2 . 000e+000
11 1 . 000e+000 2 . 000e + 000

12 1 . 000e + 000 2 . 000e+000
13 1 . 000e+000 2 . 000e+000
14 1 . 000e + 000 2 . 000e + 000

15 1 . 000e+000 2 . 000e+000
16 1 . 000e+000 2 . 000e + 000

17 1 . 000e + 000 2 . 000e + 000

18 1 . 000e+000 2 . 000e+000
19 1 . 000e+000 2 . 000e+000

-999

Section 19: Duct Segments

Duct data are read by the duct_read() function and saved by the duct_save() function. The data

are stored in the DCT DSC structures that are defined in contam.h for ContamW and simdat.h

for ContamX.

The path section starts with:

ndct // number of ducts 12

This is followed by a data header comment line and then data for all ndct ducts.

For each duct the data line includes:

duct number (12)

;

duct flag values (

junction N index (

junction M index (

duct flow element
filter index (12)

;

schedule index (12

nr //
flags //
pjn //
pjm //
pe //

Pf //
ps //
pc //
dir //
length //
Ain //
Aout //
Sllc //

in order from 1 to _ndct
12)

12) ; converted to pointer
12) ; converted to pointer
index (12) ; converted to pointer
converted to pointer

) ; converted to pointer
control node index (12) ; converted to pointer
positive flow direction on sketchpad (Ul) { W

}

length of the duct segment [m] (R4)

flow area at inlet end [nf2] - future (R4)

flow area at outlet end [rrf2] - future (R4)

sum of local loss coefficients (R4)

57

Part 2 - Project File (.PRJ)

Lam // laminar loss coefficient (R4)

u_L // units for length (12) { W

}

u_A // units for flow area (12) { W

}

The paths section is terminated with:

-999 // used to check for a read error in the above data

Example:

18 ! duct segments:
! D# f n# m# e# f# s# c# dir len Ain Aout sllc u

.

. .

1 0 1 2 1 0 0 0 2 5 0 . 15708 0 . 15708 0 0 0

2 0 2 3 1 0 0 0 2 5 0 . 15708 0 . 15708 0 0 0

3 0 3 4 1 0 0 0 2 5 0 . 15708 0 . 15708 0 0 0

4 0 4 5 1 0 0 0 2 5 0 . 15708 0 . 15708 0 0 0

5 0 5 6 1 0 0 0 2 5 0 . 15708 0 . 15708 0 0 0

6 0 6 7 1 0 0 0 2 5 0 . 15708 0 . 15708 0 0 0

7 0 7 8 1 0 0 0 2 5 0 . 15708 0 . 15708 0 0 0

8 0 8 9 1 0 0 0 2 5 0 . 15708 0 . 15708 0 0 0

9 0 9 10 1 0 0 0 2 5 0 . 15708 0 . 15708 0 0 0

10 0 11 2 9 0 0 0 1 5 0 . 15708 0 . 15708 0 0 0

11 0 12 3 8 0 0 0 1 5 0 . 15708 0 . 15708 0 0 0

12 0 13 4 7 0 0 0 1 5 0 . 15708 0 . 15708 0 0 0

13 0 14 5 6 0 0 0 1 5 0 . 15708 0 . 15708 0 0 0

14 0 15 6 5 0 0 0 1 5 0 . 15708 0 . 15708 0 0 0

15 0 16 7 4 0 0 0 1 5 0 .15708 0 . 15708 0 0 0

16 0 17 8 3 0 0 0 1 5 0 . 15708 0 . 15708 0 0 0

17 0 18 9 2 0 0 0 1 5 0 . 15708 0 . 15708 0 0 0

18 0 19

-999

Section 20

10 1 0 0

: Source/Sinks

0 1 5 0 . 15708 0 . 15708 0 0 0

Contaminant sources/sinks are read by the css_read() function and saved by the css_save(

)

function. The data are stored in the CSS DSC structures that are defined in contain.h for

ContamW and simdat.h for ContamX.

The source/sink section starts with:

_ncss // number of source/sinks

This isfollowed by a data header comment line and then datafor all ness source/sinks.

For each source/sink the data line includes:

nr // source/sink number (12) ; in order from 1 to _ncss
pz // zone index (12); converted to pointer
pe // source/sink element index (12); converted to pointer
ps // schedule index (12); converted to pointer
pc // control node index (12) ; converted to pointer
mult // multiplier (R4)

CCO // initial mass fraction (some types) [kg/kg] (R4)

The source/sink section is terminated with:

-999 // used to check for a read error in the above data

58

Part 2 - Project File (.PRJ)

Example:

6 ! source/sinks

:

! # z# e# s# c# mult CCO

1 1 1 0 0 1 0

2 1 2 0 0 1 0

3 1 3 0 0 1 0

4 1 4 0 0 1 0

5 1 5 0 0 1 0

6

-999
1 6 1 0 1 0

Section 21: Occupancy Schedules

Occupancy schedules are read by the oschd_read() function and saved by the oschd_save(

)

function. The data are stored in the ODSCHD structures that are defined in contam.h for

ContamW and simdat.h for ContamX.

The occupancy schedule section starts with:

_nosch // number of schedules (12)

This isfollowed by a data header comment line and then datafor all nosch schedules.

For each schedule the first data line includes:

nr // schedule number (12) ; in order from 1 to _nosch
npts // number of points (12)

name [] // schedule name (II) {w}

and the second line has:

desc [] // schedule description (II) {w} may be blank

This isfollowed by npts lines ofschedule data:

time // time-of-day [s] (hh:mm:ss converted to 14)

pz // zone index (12) ; converted to pointer

The occupancy schedule section is terminated with:

-999 // used to check for a read error in the above data

Example:

1 ! occupancy schedules:
1 3 OccDySchedl
Occupant day schedule one

.

00 : 00:00 0

00:12:00 4

24:00:004
-999

Section 22: Exposures

Exposure data are read by the pexp_read() function and saved by the pexp_save() function. The

data are stored in the PEXP DSC structures that are defined in contam.h for ContamW and

simdat.h for ContamX.

The exposure section starts with:

_npexp // number of exposures (12)

59

Part 2 - Project File (.PRJ)

This isfollowed by

For each exposure

three lines ofdatafor all npexp exposures,

the first data line includes:

nr // exposure number (12)

;

in order from 1 to npexp
gen // = 1 if contaminants are generated (12)

ncg // number of contaminant generations (12)

cgmlt // contaminant generation multiplier [-] (R4

)

inhmax // peak inhalation rate [m
A
3/s] (R4) {unused}

inhsch // weekly inhalation schedule index <:i2)

bodywt // body weight [kg] (R4) {unused}

u inh // units for inhalation rate (12)

u bw // units for body weight (12)

The second line has the exposure description:

desc [] // exposure/person description II

The third line has the indices of 12 occupancy schedules:

odsch[12] // vector of daily occupancy schedules - 12 indices

It isfollowed by ncg lines ofcontaminant generation data:

name // species name (II)

ps // schedule index (12) ; converted to pointer
cgmax // peak generation rate [kg/s] (R4)

u_cg // units of generation rate (12) {w}

The exposure section is terminated with:

-999 // used to check for a read error in the above data

Example:

2 ! exposures

:

1121 0.000334444 1 70 4 0

Occupant one

.

111111111111 ! occ. schd
Cl 1 1 0 1 occ

.
gen

C2 1 2 0 ! occ
.
gen

2021 0.000668889 1 80 4 0

Occupant two.

111111111111 ! occ. schd
Cl 0 1 0 ! occ

.
gen

C2 1 2 0 ! occ
.
gen

-999

60

Part 2 - Weather File (.WTH)

Section 23: Annotations

Annotations are read by the note_read() function and saved by the note_save() function. The

data are stored in the NOTE DSC structures that are defined in contain. h. Annotations are used

only in ContamW; nothing is stored when this section is read in ContamX.

The annotations section starts with:

_nnote // number of annotations (12)

This isfollowed by data for all nnote annotations:

For each annotation data line includes:

nr // annotation number (12) {w}; in order from 1 to _nnode
note [] // annotation (II) { W

}

The annotations section is terminated with:

-999 // used to check for a read error in the above data

Example:

6 ! annotations:
1 PLR_type Airflow Elements
2 to force flows through PLR paths

3 QF_type Airflow Elements
4 DR_type Airflow Elements
5 PL_type Airflow Elements
6 FN_type Airflow Elements
-999

2.4.2 Weather File (.WTH)

Ambient weather conditions are made available to ContamX through the weather file which has

a .WTH file extension. Use this file when performing transient simulations and you need to vary

the ambient conditions with time. If you need to specify wind pressures that vary with time and

spatially around the building envelope, you should consider using a WPC file (See Working with

WPC Files).

Thefirst line ofthe weatherfile is used to identify ; the type offile. It is exactly:

WeatherFile ContamW 2.0

The second line is a description ofthe file entered by the user:

desc [] // file description (II) {w}; may be blank

Succeeding lines contain:

StartDate // first date for weather data (mm/dd —> IX)

EndDate // last date for weather data (mm/dd —> IX)

These arefollowed by a header linefor the date data:

IDate DofW Dtype DST Tgrnd

Day datafor each datefrom StartDate to EndDate:

date // date (mm/dd —> IX)

dayofwk // day of week [l =Sun ... 7=Sat] (12)

daytype // type of day for schedule reference [1-12] (12)

DST // daylight savings time [0 / 1 = DST in effect] (12

Tground // ground temperature [K] (R4)

61

Part 2 - Weather File (.WTH)

These arefollowed by a header line for the weather data:

!Date Time Ta Pb Ws Wd Hr Ith Idn Ts Rn Sn

Weather data for each datefrom StartDate to EndDate:

date (mm/dd —> IX)

time of day (hh:mm:ss —> 14)

ambient temperature [K] (R4

;R4)

date //

time //

tmpambt //

barpres //
windspd //
winddir //

humrat io //

solhtot //

solhdif //

t skyef f //

rain //

snow //

[Pa] (R4

:r4

:r4

total solar flux on horizontal surface [W/m 2] (R4)

// diffuse solar flux on horizontal surface [W/nf2] (R4

effective sky temperature [K] (R4)

rain indicator [0 or 1] (12)

snow indicator [0 or 1] (12)

The file description may not begin with a T. The StartDate and EndDate are used to verily that

the file data covers the entire period to be simulated. The StartDate may not be later than the

EndDate.

The weather data must start at time 00:00:00 on the StartDate and end at 24:00:00 on the

EndDate. The times must be in consecutive order, but the difference between successive times

need not be constant.

NOTE: Be sure to set the dateformats as shown in the sample below when editing/saving tab-

delimitedfiles with a spreadsheet program

The ground temperature and solar flux through snow cover data will be used if the program is

expanded for full thermal simulation. At present place holder values (e.g., 0) may be used.

Example:

WeatherFile ContamW 2 .

0

Weather for Janl - Jan3

1/1 1/3

1 Date DofW Dtype DST Tgrnd
1/1 4 4 0 281 .

6

1/2 5 5 0 281 . 57

1/3 6 6 0 281 . 54

i Date Time Ta Pb Ws

1/1 00 : 00 : 00 275 . 15 100000 3 . 6

1/1 01

:

00 : 00 275 .15 100000 3 . 1

1/1 02 : 00 :: 00 275 . 15 100000 2 . 1

1/1 24 : 00 : 00 273 . 15 100000 4 . 6

1/2 01 : 00 :: 00 273 . 15 100000 2 . 1

1/2 02 : 00 :: 00 272 . 15 100000 4 . 1

1/2 24 : 00 :: 00 272 . 15 100000 1 . 5

1/3 01 : 00 : 00 272 . 15 100000 1

1/3 02 : 00 : 00 272 . 15 100000 2 . 6

1/3 24 : 00 : 00 282 . 15 100000 5 . 7

Wd Hr Ith Idn Ts Rn Sn

290 2 . 213 0 0 259 ,. 442 0 0

300 2 . 213 0 0 259 .. 442 0 0

300 2 . 213 0 0 259 .. 442 0 0

320 1 . 915 0 0 256 .. 627 0 0

330 1 . 915 0 0 256 .. 627 0 0

330 1 . 763 0 0 255 ..899 0 0

230 1 . 763 0 0 255 ..899 0 0

210 1 . 763 0 0 255 ..899 0 0

260 1 . 763 0 0 255 ..899 0 0

230 3 . 607 0 0 268 ..353 0 0

62

Part 2 - Contaminant File (.CTM)

2.4.3 Contaminant File (.CTM)

I rnnsient ambient species data is made available to ContamX through the contaminant file which

h.is a .CTM file extension. Use this file when performing transient simulations and you want the

ambient concentration to be represented by a single value at each time step. If you need the

ambient concentration to vary spatially as well over the building envelope, then you should use

the .WPC file (see Working with WPC Files in Part 1).

I lie first line ofthe contaminantfife is used to identify the type offile. It is exactly:

; "ciesFile ContamW 2.0

l he second line is a description ofthefile entered by the user:

i-'sc [] // file description (II) {w} ; may be blank

Succeeding lines contain:

kartDate // first date for contaminant data (mm/dd —> IX)

EndDate // last date for contaminant data (mm/dd —> IX)

NumCont // number of contaminants (12)

I 1 Name [1] // name of contaminant 1 (11-16 characters maxi

I i Name [2] // name of contaminant 2 (II)

Mime [NumCont] // name of contaminant NumCont (II)

The last name isfollowed by a header linefor the remaining data:

IDate Time Name [1] Name [2] ... Name [NumCont]

Then comes concentration datafor each time step:

date // date (mm/dd —> IX)

time // time of day (hh:mm:ss —> 14)

cone [1] // concentration of contaminant 1

cone [2] // concentration of contaminant 2

(R4)

(R4)

cone [NumCont] // concentration of contaminant NumCont (R4)

The file description may not begin with a ‘
!

’. The StartDate and EndDate are used to verily that

the file data covers the entire period to be simulated. The StartDate may not be later than the

EndDate. The contaminant names are matched against the names of the contaminants to be

simulated. Concentrations for names that do not match will be ignored.

The concentration data must start at time 00:00:00 on the StartDate and end at 24:00:00 on the

EndDate. The times must be in consecutive order, but the difference between successive times

need not be constant. Concentrations are given in units of mass (or density) of contaminant per

mass (or density) of air, air being the sum of all species including non-contaminants.

NOTE: Be sure to set the dateformats as shown in the sample below when editing/saving tab-

delimitedfiles with a spreadsheet program

Example:

SpeciesFile ContamW 2 .

0

Demo ctm file for Jan 1 - Jan 3

1/1 1/3 2

CO C02

! Date Time CO C02

1/1 0:00:00 9 . 17E-07 5 . 23E-04
1/1 1:00:00 9 . 17E-07 5 . 23E-04

63

Part 2 - Restart File (.RST)

1/1 2 : 00 : 00 9 . 17E-07 5 . 23E-04

1/2 24 : 00 : 00 9 . 17E-07 5 . 23E-04

1/2 1 : 00 : 00 9 . 17E-07 5 . 23E-04

1/2 2 : 00 : 00 9 . 17E-07 5 . 23E-04

1/3 24 : 00 : 00 9 . 17E-07 5 . 23E-04

1/3 1 : 00 : 00 9 . 17E-07 5 . 23E-04

1/3 2 : 00 : 00 9 . 17E-07 5 . 23E-04

1/3 24 : 00 : 00 1 . 41E-06 5 . 23E-04

2.4.4 Restart File (.RST)

Restart is an alternative to normal initialization. ContamX will either read the restart file or

create it. Creation may occur only for transient simulations starting at 00:00:00 and ending at

24:00:00, on the same or different days. A restart file will have data at 24:00:00 of all days

simulated. If the run is not cyclic, it will also have data at 00:00:00 of the first day simulated.

All code is contained in file restart.c with file 'globals'.

IX set_urst (IX flag)

;

flag = 0: initialize parameters.
flag = 1: open restart file _urst; write header
flag = 2: close restart file,

flag = 3: remove restart file.

data

.

void resout (IX date, 14 time)

;

if _urst open, write current date/time restart data.

void resget (IX rstdate, 14 rsttime);

read rstdate/rstt ime restart data.

HEADER DATA:

m [0] = 0L; /* TURBO C+ + messes up the first

m [1] = (14) nzone

;

/* therefore, send 4

m [2] = (14) npath

;

m [3]
= (14) nctm;

m [4] = (14) nj ct ;

m [5] = (14) ndct ;

m [6] = (14) ness ;

m [7] (14) nctrl

;

m [8] - (14) redat . date_0 ;

m [9] = (14) redat . date_1 ;

m [10] = (14) rSizeData

;

m [11] = (not set

)

bytes written
unused bytes.

*/

*/

m[l] thru m[7] allow ContamW to check for some changes in the project.

m[8] and m[9] are the date limits displayed to the user.

m[ll] will allow reading all dates on the file -- could be used to

create a selection box of available dates.

RESTART DATA:

For all AF_NODEs

:

R8 T - temperature

64

Part 2 - Continuous Values File (.CVF)

R8 P - pressure
R8 M - mass
R4 Mf [_nctm] - mass fractions

For all AF_PATHs

:

R8 Flow[0] - primary flow
R8 Flow[l] - secondary flow
R8 dP - pressure drop

For CSS_DSC:
CSE_EDS (14

)
pss- >local (stored as R4 , converted to 14 in simulation)

CSE_BLS (R4
)
pss->local

For CT_NODEs

:

SNSDAT : R4 oldsig
PICDAT : R4 oldsig, R4 olderr
HYSDAT : R4 oldsig

2.4.5 Continuous Values File (.CVF)

Control node values that change linearly in time are made available to ContamX through the

continuous values file which has a .CVF file extension.

The first line ofthe CVF is used to identify the type offile. It is exactly:

ContinuousValuesFile ContamW 2.1

The second line is a description ofthe file entered by the user:

desc [] // file description (II) {w}

;

may be blank

The next two lines define the period covered by the file:

StartDate // first date for DEF data (mm/dd —> IX)

EndDate // last date for DEF data (mm/dd —> IX)

The next section specifies the control node names:
_nbvfn // number of CVF node names

followed by nbvfn lines consisting ofnode names:
name [] // node name (II)

The remainder ofthe file consists ofdatafor all nodesfor each date and timefrom StartDate to

EndDate:

date // date (mm/dd —> IX)

time // time of day (hh:mm:ss -a 14)

value [1] // value [?] for name [1] (R4)

value [_nbvf] // value [?] for name [_nbvf] (R4)

The node data must start at time 00:00:00 on the StartDate and end at 24:00:00 on the EndDate.

The times must be in consecutive order, but the difference between successive times need not be

constant.

The file description may not begin with a
4

! \ The StartDate and EndDate are used to verity that

the file data covers the entire period to be simulated. The StartDate may not be later than the

EndDate. Data elements on a single line are separated by tabs. The data must be in time-

sequential order. The file values must be in the units needed for the signal created by the control

node. Be sure to include a data line at the end of each day - 24:00:00.

65

Part 2 - Discrete Values File (.DVF)

Node names may not include imbedded blanks. Data for nodes that are not in the project file

will be ignored. If a CVF node name in the project file is not included in the CVF, a fatal error

will result. ContamW will assist the user by checking node names. ContamX will perform the

name check before simulation begins.

Example:

ContinuousValuesFile ContamW 2.1

Sample CVF file

1/1 1/3

4

nodel
node2
node3
node4

1/1 00 :: 00 :: 00 0 .. 0 0 .. 5 0 .. 5 1 .. 0

1/1 04 :: 00 :: 00 1 .. 0 0 .. 0 1 .. 0 0 .. 0

1/1 08 :: 00 :: 00 0 .. 5 0 .. 5 0 .. 5 0 .. 5

1/1 12 :: 00 :: 00 0 .. 0 1 .. 0 0 .. 0 1 .. 0

1/1 16 :: 00 :: 00 1 .. 0 0 .. 5 0 .. 5 0 .. 0

1/1 24 :: 00 :: 00 0 .. 0 0 .. 5 0 .. 5 1 .. 0

1/2 04 :: 00 :: 00 1 .. 0 0 .. 0 1

.

. 0 0 .. 0

1/2 08 :: 00 :: 00 0 .. 5 0 .. 5 0 .. 5 0 .. 5

1/2 12 :: 00 :: 00 0 .. 0 1 .. 0 0 .. 0 1 .. 0

1/2 16 :: 00 :: 00 1 .. 0 0 .. 5 0 .. 5 0 .. 0

1/2 24 :: 00 :: 00 0 .. 0 0 .. 5 0 .. 5 1

.

. 0

1/3 04 :: 00 :: 00 1 .. 0 0 .. 0 1 .. 0 0 .. 0

1/3 08 :: 00 :: 00 0 ., 5 0 ., 5 0 ., 5 0 .. 5

1/3 12 :: 00 :: 00 0 ., 0 1

.

. 0 0 ., 0 1

.

. 0

1/3 16 :: 00 :: 00 1 .. 0 0 .. 5 0 .. 5 0 .. 0

1/3 24 :: 00 :: 00 0 .. 0 0 .. 5 0 .. 5 1 .. 0

2.4.6 Discrete Values File (.DVF)

Control nodes values that change discretely in time are made available to ContamX through the

discrete values file which has a .DVF file name extension.

The first line ofthe DVF is used to identify ’ the type offile. It is exactly:

DiscreteValuesFile ContamW 2.1

The second line is a description ofthe file entered by the user:

desc [] // file description (II) {w} ; may be blank

The next two lines define the period covered by thefde:

StartDate // first date for DEF data (mm/dd —> IX)

EndDate // last date for DEF data (mm/dd —

>

IX)

The next section specifies the control node names:
_ndefn // number of DVF node names

followed by ndefn lines consisting of:

name [] // node name (II)

value // initial value [?] (R4)

Succeeding lines present data whenever a node value changes:

date // date (mm/dd —» IX)

66

Part 2 - Simulation Results File (.SIM)

time // time of day (hh:mm:ss —» 14)

name [] // node name (II)

value // new value [?] (R4)

The file description may not begin with a
4

! \ The StartDate and EndDate are used to verify that

the file data covers the entire period to be simulated. The StartDate may not be later than the

EndDate. Data elements on a single line are separated by tabs. The data must be in time-

sequential order. More than one node may change at the same time with each node listed on a

separate line. The file values must be in the units needed for the signal created by the control

node. Each day should end with a line of the form: date 24:00:00 0 0.

Node names may not include imbedded blanks. Data for nodes that are not in the project file

will be ignored. If a DVF node name in the project file is not included in the DVF, a fatal error

will result. ContamW will assist the user by checking node names. ContamX will perform the

name check before simulation begins.

Example:

DiscreteValuesFile ContamW 2.1

Sample DVF file

01/1 01/03

4

nodel 0 .

0

node2 0 .

5

node 3 0 .

5

node4 1 .

0

1/1 02:00:00 1 0.75

1/1 02:30:00 3 0.25

1/1 03:00:00 4 0.00

1/1 08:00:00 2 1.00

1/1 12:45:00 1 1.00

1/1 21:30:00 1 0.75

1/1 24:00:00 0 0.00

1/2 01:30:00 1 0.00

1/2 07:59:59 3 0.25

1/2 23:30:00 1 0.75

1/2 24:00:00 0 0.00

1/3 18:00:00 3 1.00

1/3 24:00:00 0 0.00

2.4.7 Simulation Results File (.SIM)

The results of the ContamX simulation are communicated back to the ContamW program in the

simulation results file. This file will be created in the same directory as the project file with the

name of the project file and the .SIM extension appended. The format of this file has not

changed since the Contam96 DOS version of the program. It is a binary file for faster access and

smaller size than a text file. It can be read and reported as text by the SIMREAD.EXE program

available from NIST.

The first 16 lines of the simulation results file contain data (32-bit integers) to help assure that

the results apply to the project file currently in ContamW and to set the array sizes necessary to

process the results.

0 // spacer (to avoid a TurboC bug) (14)

_nzone // number of airflow zones (excluding ambient) (14)

67

Part 2 - Simulation Results File (.SIM)

npath //

nctm //
time list //

date 0 //

time 0 //

date 1 //

time 1 //

pf save //

zf save //

zcsave //

nafnd //

nccnd //

nafpt //

number of airflow paths (14)

number of contaminants (14)

listing time steps [s] (14)

start of simulation - day of year (14)

start of simulation - time of day (14)

end of simulation - day of year (14)

end of simulation - time of day (14)

if true, write path flow results (14)

if true, write zone flow results (14)

if true, write zone contaminant results (14)

number of airflow nodes (zones + junctions) (14)

number of contaminant nodes (zones + junctions) (14)

number of airflow paths (paths + ducts) (14)

This isfollowed by _nafnd lines ofairflow node cross-reference data:

typ // source of node [zone or junction] (U2)

nr // zone or junction number (U2)

The next _nafnd lines give the contaminant node cross-reference data:

typ // source of node [zone or junction] (U2)

nr // zone or junction number (U2)

The next _nafpt lines give the airflow path cross-reference data:

typ // source of path [path, duct, or leak] (U2)

nr // path, duct, or leak number (U2)

The simulation resultsfor each day consist of:

The resultsfor each time step consist of:

A line oftime and ambient data:

dayof

y

// day of year [1 to 365] (12)

daytyp // type of day [1 to 12] (12)

sim time // time value [s] [0 to 86400] (14)

Tambt // ambient temperature [k] (R4)

P // barometric pressure [Pa] (R4)

Ws // wind speed [m/s] (R4)

Wd // wind angle [deg] (R4)

CC [0] // ambient mass fraction of species [kg/kg] (R4)

CC [n] // ambient mass fraction of species n [kg/kg] (R4)

A line ofdatafor each airflow path:

nr // path number; use as check (12)

dP // pressure drop across path [Pa] (R4)

FlowO // primary flow value [kg/s] (R4)

Flowl // alternate flow value [kg/s] (R4)

A line ofdatafor each airflow node (excluding ambient):

nr // node number; use as check (12)

T // node temperature [K] (R4)

P // node reference pressure [Pa] (R4)

D // node air density [kg/m^3] (R4)

A line ofdatafor each contaminant node (excluding ambient):

nr // node number; use as check (12)

CC[0] // mass fraction of species 0 [kg/kg] (R4)

68

Part 2 - Controls Log File (.LOG)

CC [n] // mass fraction of species n [kg/kg] (R4)

The time step data isfollowed by summary datafor the day.

It begins with thefollowing line ofambient data:

dayofy // day of year [1 to 365] (12)

daytyp // type of day [1 to 12] (12)

Tamax // maximum ambient temperature [k] (R4)

Tamin // minimum ambient temperature [k] (R4)

Pavg // average barometric pressure [Pa] (R4)

Wsmax // maximum wind speed [m/s] (R4)

Wsavg // average wind speed [m/s] (R4)

CC[0] // maximum ambient mass fraction of species 0 [kg/kg] (R4)

CC [n] // maximum ambient mass fraction of species n [kg/kg] (R4)

A line ofdatafor each airflow path:

nr // path number; use as check (12)

dPmax // maximum pressure drop across path [Pa] (R4)

Flowmax // maximum primary flow value [kg/s] (R4)

0.0 // place holder (R4)

A line ofdatafor each airflow node (excluding ambient):

nr // node number; use as check (12)

T // node temperature [K] (R4)

P // node reference pressure [Pa] (R4)

D // node air density [kg/rrf3] (R4)

A line ofdatafor each contaminant node (excluding ambient):

nr // node number; use as check (12)

CCmax[0] // maximum mass fraction of species 0 [kg/kg] (R4)

CCmax [n] // maximum mass fraction of species n [kg/kg]

Note: this file requires that the structures in ContamW and ContamX be compiled using no

greater than 2-byte member alignment (under Visual C++). The file is unreadable if the default

structure member alignment is used.

2.4.8 Controls Log File (.LOG)

The output from report control elements , are written to the controls log file. This file will be

created in the same directory as the project file with the name of the project file and the .LOG
extension appended. For example if the project is MyProj.PRJ, ContamX will create the file

MyProj.LOG. Values will be reported for each listing time step of a transient simulation. The file

is tab-delimited so it can be easily imported into a spreadsheet program.

The first line ofthe Controls LOG file is a comment line that contains a list ofthe headersfor

each report control element. These headers are created by the user.

The second line is a comment line that contains column headings indicating Date, Time and the

units ofeach reported value.

Succeeding lines contain:

Datafrom 00:00:00 ofStartDate to 24:00:00 ofEndDate:

69

Part 2 - Wind Pressure and Contaminant File (.WPC)

At each time:

date

time
output [1]

output [2]

// date (mm/dd —> IX)

// time of day (hh:mm:ss —> 14)

// outputs for each report control (R4)

output [number of report controls]

2.4.9 Wind Pressure and Contaminant File (.WPC)

This file provides ambient pressure and contaminant concentrations values for every flow path

that connects to ambient. See section Working with WPC Files in PART 1 for information on

using this file in CONTAM.

The first line ofthe WPC file is used to identify the type offile. It is exactly:

WPCFile ContamW 2.1

The second line is a description ofthe file entered by the user:

desc [] // file description (II) {w}; may be blank

12) [0 possible]

Succeeding lines contain:

NumPath // number of flow paths (12)

NumCont // number of contaminants (species'

UsePres // 1 = use pressures, 0 = don't (12)

dtmin // minimum time step (12)

StartDate // first date for WPC data (mm/dd —» IX)

EndDate // last date for WPC data (mm/dd -a IX)

II Name [1] // name of contaminant 1 (II - 16 characters max)
II Name [2] // name of contaminant 2 (II)

Name [NumCont] // name of contaminant NumCont (II

The next NumPath lines describe eachflow path:

number
X

Y

Z

map

// sequence number (12)

// X-coordinate (R4)

// X-coordinate (R4)

// Z-coordinate (R4)

// mapping [0 = OK; 1 = error] (12)

Datafrom 00:00:00 ofStartDate to 24:00:00 ofEndDate:

At each time:

First line:

date // date (mm/dd IX)

time // time of day (hh : mm : s s -4 14)

pres // ambient pressure [Pa] (R4) (ifpressures are used)

dens // air density [kg/m 3
] (R4) (ifpressures are used)

Second line: (ifpressures are used)

pres [1] // absolute ambient pressure at path[l] [Pa] (R4)

pres [NumPath] // absolute ambient pressure at path [NumPath] [Pa] (R4)

Third line (forfirst contaminant, ifNumCont > l):

cone [1] // concentration at path[l] [kg/kg air] (R4)

70

Part 2 - Path Location Data File (.PLD)

cone [NumPath] // concentration at path [NumPath] [kg/kg air] (R4)

Fourth line (for second contaminant, ifneeded):

Last line (for contaminant NumCont, ifneeded):

cone [1] // concentration at path[l] [kg/kg air] (R4)

cone [NumPath] // concentration at path [NumPath] [kg/kg air] (R4)

The file description may not begin with a
4

! \ The StartDate and EndDate are used to verify that

the file data covers the entire period to be simulated. The StartDate may not be later than the

EndDate.

The data must start at time 00:00:00 on the StartDate and end at 24:00:00 on the EndDate. The

times must be in consecutive order, but the difference between successive times need not be

constant.

Example:

WPCfile ContamW 2.1

For WPCtest3.prj
2 ! flowpaths
1 ! contaminants
1 1 use pressure flag

0 ! time step
01/01 ! start date
01/01 1 end date
Cl

! nr X Y Z

1 0 . 000 4 . 000 1 . 500

2 8 . 000 4 . 000 1 . 500

01/01 00:00: 00 101325 1 .204

101308 .30 101306 .30

oo 1 . Oe-6

01/01 24:00: 00 101325 1.2041
101308 .30 101306 .30

oo 1 . 5e-

6

map
0

0

2.4.10 Path Location Data File (.PLD)

The PLD (Path Location Data) File will consist of the locations of any flow paths that connect

the building to the external environment, as well as additional information for directing the

behavior of the EWC File Converter. This file is created by ContamW and stored in the same

directory as the project file having the same name as the project file but with the .pld extension

replacing the .prj extension. It is created as needed for use in comparing WPC file information

with that in the CONTAM project file, (see Working with WPC Files in Part 1 of this document).

• The file is in an ASCII line-delimited format.

• The reference location, defined by (Xref,Yref,Zref), represents the EWC file location that is

equivalent to the origin of the CONTAM coordinate system for the path locations. The user

must coordinate between the EWC file and CONTAM file to determine this location's

coordinate values.

71

Part 2 - Path Location Data File (.PLD)

• The rotation angle is about the Z (vertical) axis. The user must coordinate the direction of

rotation between CONTAM and EWC file coordinates It is assumed there are no rotations

about the X or Y axes.

• The six coordinates on line 6 define a bounding box that surrounds the flow paths within this

file, which could be used to assist the EWC File Converter in rapidly excluding unneeded

points (e.g., that are too distant from the building) during the mapping process. Note that this

bounding box does not necessarily surround the entire building.

• The simulation time step provides a recommendation to the EWC File Converter for reducing

the size of the WPC file, so that only the time steps that coincide with the simulation time

step could be included (which could reduce interpolation required).

• Each flow path is uniquely identified by a combination of flow path type and flow path ID

values.

• Comments begin with an exclamation point (T) and may begin at the start of any line (so

that the entire line will be ignored) or after all fields of a line (so that the remainder of the

line will be ignored).

• For user readability, fields should be commented whenever possible.

• The Precision column for the real data types may be interpreted similar to a C scanf()

statement's conversion specification.

HEADER SECTION:

Line Field Data Type Precision Notes

1 EWC filename character filename includes full path

? WPC filename character filename includes full path

3 file comments character User-defined notes about this file

4 coordinate headings character this is one line of comments for the next section:

set to “IXref Yref Zref angle"

5 Xref real %7.3f units of meters

5 Yref real %7.3f units of meters

5 Zref real %7.3f units of meters

5 rotation angle real %8.3f rotation about Z axis in degrees;

positive for CCW direction

6 latitude real %8.4f units of degrees; sign is positive for north

6 longitude real %8.4f units of degrees; sign is positive for east

7 bounding box headings character this is one line of comments for the next section:

set to “!Xmin Xmax Ymin Ymax Zmin Zmax"

8 Xmin real %7.3f units of meters

8 Xmax real %7.3f units of meters

8 Ymin real %7.3f units of meters

8 Ymax real %7.3f units of meters

8 Zmin real %7.3f units of meters

8 Zmax real %7.3f units of meters

72

Part 2 - Path Location Data File (.PLD)

9 time step headings character this is one line of comments for the next section:

set to ”!step shift start end"

10 time step integer units of seconds

10 data shift time format of hh:mm:ss; this is the starting time for

the EWC time steps when converted to WPC

1 0 start date date fonnat of mm/dd

10 end date date format of mm/dd

1 1 wind pressures integer 1: include pressures in WPC; 0: don't

1 1 number of species integer

1 1 species map tolerance real %7.3f for use by EWC file converter file to

match species between EWC and PLD files by

molecular weight.

CONTAMINANT DEFINITION SECTION:

12 species headings character this is one line of comments for the next section:

set to “Iname m.wt"

The next (number ofspecies) lines contain this data:

for each species...

name character

molecular weight real %6.2f

endfor each species

FLOWPATH DEFINITION SECTION:

number of flow paths integer

path map tolerance real %7.3f for use by EWC file converter to match flow paths

that are more than this distance away: units of meters:

this field is on the same line as the above field

flow' path headings character this is one line of comments for the next section:

set to “!type ID X Y Z"

The next (number of flow' paths) lines contain this data:

for each flow path...

flow path ID number integer

X real %7.3f units of meters

y real %7.3f units of meters

z real %7.3f units of meters

endfor eachflow path

last line marker -999 integer

Example:

C:\Program Files\Contamw2\Pr j s\WPCcube . ewe ! EWC file

C:\Program Files\Contamw2\Pr j s\WPCcubel . wpc ! WPC file

WPC description

73

Part 2 - ContamX Log File (CONTAMX2. LOG)

Xref Xref Yref angle
0 . 000 0 . 000 0 . 000 0 . 00

0 . oooc) 0.0000 ! no latitude/longitude
Xmin Xmax Ymin Ymax Zmin Zmax
0 . 000 5 . 000 2 . 500 10.000 1.000 1 . 000

step shift start end
0 00:00: 00 1/1 1/1

1 2 0.01 ! pressures flag, # species, mapping
name
CO

C02

4

m . wt

28 . 00

44 . 00

1.00 ! number of flow paths and mapping tolerance
id# X Y Z

1 5 . 000 10 . 000 1 . 000

2 0 . 000 7 . 500 1 . 000

3 0 . 000 5 . 000 1 . 000

4 0 . 000 2 . 500 1 . 000
-999

tolerence

2.4.11 ContamX Log File (CONTAMX2.LOG)

ContamX produces a “log file'’ summarizing its execution every time it is run. The log file was

created primarily as an aid to the program developers, but it can also help the user to more

effectively run the program. In particular, it can be used to optimize the performance of a

particular simulation, and it records error messages to help the user or the program developers

track down problems.

The log file is named CONTAMX2.LOG and is written into the directory containing

CONTAMX2.EXE. It is therefore overwritten every time ContamX is run. This prevents an

accumulation of such files but requires the user to review the file before a subsequent run

replaces it.

The following example output is from a very large project (1.4 Mbytes) involving a steady-state

calculation with 489 zones and 4246 duct junctions.

Program: C:\ContamW2\ContamX2.exe : Thu Jan 02 10:33:02 2003

Project: C:\ContamW2\PrjFiles\ManyDucts.prj : Thu Jan 02 10:16:04 2003

Time: Thu Jan 02 13:19:28 2003

The first three lines of the log file report the full path\name of the program and the time it was

created, the full path\name of the project file and the time it was created, and the time the

program started running.

Reading project file: C:\Program Files\ContamX2 \ test
.
pr

j

Read PRJ : 3391868 bytes allocated, 1082748 freed, 2309120 net
Number of --

contaminants: 0

day schedules: 0

week schedules: 0

filters

:

0

reactions: 0

wind profiles: 0

source elements: 0

flow elements: 317

airflow nodes: 4735
airflow paths: 7690

74

Part 2 - ContamX Log File (CONTAMX2.LOG)

source/sinks: 0

I lie second section of the log file summarizes reading the project file. It includes the total heap

memory allocated, heap used temporarily and freed, and the net heap remaining in use. It notes

the number of components in the simulation (in this case for airflows only). This section can

. 1 1 so include an echo of the project file (the echo parameter on the first line of the project file) to

locate any error messages that occur while reading the project file.

"t up simulation at: Thu Jan 02 13:19:29 2003

•.if low Equations:
t ’34 variable pressure nodes

1 constant pressure nodes
dumber of equations: 4735

Non-zero elements: 17427

Initial fill fraction: 0.001
Matrix Profile Analysis:

Average Profile: 656.94
Bandwidth: 4229

Petermining equation reordering:
Equations will be reordered.

Average Profile: 204.62
Bandwidth: 891

Skyline Matrix:
Number of rows: 4734

Lower Triangle: 968667 elements
Upper Triangle: 0 elements
Fill fraction: 0.043

Solve nonlinear equations by Newton-Raphson with variable trust region.

Solve Jacobian simultaneous linear equations by symmetric skyline method.

Arrays: 12080012 bytes allocated, 1648272 freed, 10431740 net

I he third section of the log file summarizes the creation of the arrays for solving the airflow and

mass fraction equations. In this case the skyline method with equation reordering (the default) is

being used to solve the 4734 simultaneous non-linear airflow equations. Equation reordering

reduces the average profile by a factor of three resulting in a symmetric matrix containing

%8,667 elements. This is most of the additional heap allocation.

Begin simulation at: Thu Jan 02 13:19:29 2003

Start: 12110772 bytes allocated, 1679032 freed, 10431740 net
Running steady-state initialization:
DATE: JanOl time: 00:00:00

The fourth section echoes varying amounts of information during the simulation. It can echo the

weather, contaminant, and other input files based on the echo parameter in the project file. It can

also record the progress of a transient simulation and record the values being written to the

simulation results file, based on the value entered for the “list" parameter which is toward the

end of the run control section of the project file.

Time to perform simulation: 123.86 s

0 time steps
1 calls to SolveAf (

)

31 calls to FillAfO
22 calls to luf_sky_s (

)

22 calls to lus_sky_s (

)

75

Part 2 - ContamX Log File (CONTAMX2.LOG)

2676 calls to cubic (N)

facBins : 0000000000000000000001
rangeDWC : 10062 lam, 2459 trns, 141529 turbulent

End: 12110772 bytes allocated, 1679032 freed, 10431740 net
Final: 12110772 bytes allocated, 12110772 freed, 0 net
Time: Thu Jan 02 13:21:33 2003

The final section summarizes the calculations, the simulation time, and heap usage. The

simulation time is accurate to 1 /20
th
second, but may include other programs operating under MS

Windows. There is one call to solve the airflows which required 22 iterations solving the

simultaneous linear equations. The program frees all allocated heap memory as indicated in the

next to last line where the number of bytes freed is identical to that allocated. The last line is the

time at which the program terminated. Subtracting the time when the program started gives 125

seconds total run time. All but about one second was spent solving the airflow equations.

2.4. 11.1 Error Messages

The log file records all error messages displayed on the screen. They are of the form:

severity (file, line)

message

where

severity is a word describing the importance of the error,

file is the name of the C source file where the error message originates,

line is the number of the line in that file, and

message describes the error to the user.

2.4.11.2 Evaluation of Alternate Solution Methods

ContamX provides alternate methods to solve the simultaneous non-linear equations and the

simultaneous linear equations. These alternatives can be used when a problem is encountered

with the default methods, and they may provide better performance. Here we will try several of

these methods, on the same large project presented previously, as an exploration of their

performance and the use of the log file to improve performance. First we will use the simple

under relaxation method to solve the simultaneous non-linear equations. The simulation

summary indicates:

Time to perform simulation: 107.10 s

1 calls to SolveAf (

)

20 calls to FillAfO
19 calls to luf_sky_s (

)

19 calls to lus_sky_s (

)

This is a small (13.5%) improvement because there are 3 (15%) fewer N-R iterations. The

simple trust region is still recommended as being generally more reliable.

The default method for solving the simultaneous linear equations includes reordering the

equations to reduce the profile of the Jacobian matrix. The following results show the impact of

not reordering the equations.

76

Part 2 - ContamW Configuration File (CONTAM.CFG)

Skyline Matrix:
Number of rows: 4734

Lower Triangle: 3109960 elements
Upper Triangle: 0 elements
Fill fraction: 0.139

Arrays: 28843652 bytes allocated, 1281568 freed, 27562084 net

Time to perform simulation: 1394.17 s

1 calls to SolveAfO
31 calls to FillAf()

22 calls to luf_sky_s (

)

22 calls to lus_sky_s (

)

Final: 28874412 bytes allocated, 28874412 freed, 0 net

The number of values stored in the Jacobian has more than tripled (970,000 to 3,100,000),

allocated memory has increased by about 1 7,000,000 bytes, and - most importantly - the

simulation time is 1 1.3 times longer. The gains will not be as dramatic for smaller problems and

for those with well-banded Jacobians as can arise from tall buildings. However, the time for

reordering is so small, that it should almost always be tried. The reordering algorithm is not

totally reliable - sometimes it fails and a few crashes have been observed.

The alternate method for solving the simultaneous linear equations is a preconditioned

conjugate-gradient (PCG) algorithm. This is an iterative method (the skyline method is direct)

and may not converge. The following results were achieved for this case:

Arrays: 4470060 bytes allocated, 1281568 freed, 3188492 net

Time to perform simulation: 74.92 s

1 calls to SolveAfO
32 calls to FillAfO
23 calls to sa_pcg (

)

16666 sa_pcg () iterations
End: 4500820 bytes allocated, 1312328 freed, 3188492 net

There is a fairly significant (39.5%) improvement in solution time over the default case. There is

a more dramatic savings (69%) in net allocated memory. The PCG method always uses less

allocated memory than the skyline method, although that is usually not a problem - especially

for relatively small projects. The PCG method is also usually slower than skyline for small

projects. The PCG method should be tested when you have a large problem that will require

several runs for a full analysis.

2.4.12 ContamW Configuration File (CONTAM.CFG)

Each time ContamW is run, it checks for the existence of the contain.cfg file. This file contains

the default settings to use when the program is run (see Configuring CONTAMW in the 2.0 User

Manual). All of the parameters that appear in the configuration file can be modified using the

Options... selection of the View menu except for the EWC-to-WPC file converter. The value

saved will be that which you have set in the WPC File... selection of the Weather menu. To reset

the converter name back to “null,” you must edit the configuration file manually.

The first line ofthe file is used to identify 7 the type offile. It is exactly:

ConfigFile ContamW 2.1 ! file type identification

77

Part 2 - ContamW Configuration File (CONTAM.CFG)

l he next five lines are comments explainingfont selection.

/ he seventh line is the list offont sizes to be made availablefor zooming the SketchPad
nts // number of fonts available (1-7)

followed by nfont values offont sizes (allowed values are 1, 2, 3, 4, 5, 8, 16)

font(l) ... font(nfonts)

/he next line indicates the default set of units to use (SI or IP)

rUnits // default units (0, 1) (14)

/ he next line indicates the default flow units to use

: uFlowUnit // default flow units (0 - 8) (14)

/ he next line indicates the default zone temperature and units

: ief // default zone temperature (R4)

I :nits // temperature units (0 - 3) (14)

1 he last line indicates thefile path ofan EWC-to-WPC file converter set to “null ” ifnot used
.will // full pathname of file converter

Example:

’onfigFile ContamW 2.1 ! file type identification
. anything after an exclamation mark is treated as a comment.
. number of fonts, N, followed by N valid font sizes in increasing order.

! 7 123458 16 ! all valid sizes; size 8 is required.

: 6 1 2 3 5 8 16 -or- 5 1 2 4 8 16 are good choices.
: if the size 1 font crashes the program, remove it.

7 123458 16 ! selected fonts.

0 ! default units: 0 = SI, 1 = IP.

4 ! default flow units: 0 = kg/s, 1 = scfm, 2 = sL/s, 3 = sm3/s,

! 4 = sm3/h, 5 = lb/s, 6 = sft3/h, 7 = sL/min, 8 = kg/h.

20 2 ! default zone temperatures in units:

I 0 = K, 1 = R, 2 = C, 3 = F.

null ! EWC to WPC converter

2.5 Data Structures

Most of the data structures are defined in the files simdat.h and selmts.h. Global variables are

defined in the sglob.h and sxtrn.h files. Such variables are indicated by a leading underscore in

the variable name. Linked lists are used extensively to store the data describing the building

airflow and contaminant components. Vectors and arrays are used in the solution of the linear

and nonlinear equations.

78

Part 3 - ContamW Program Documentation

PART 3 - ContamW Program Documentation

3.1 Introduction

This part presents an overview of the program structure, data and logic of the ContamW,
CONTAM's graphical user interface (GUI). It does not present the functions in as much detail as

was done for the solver, because of the large number of files and functions associated with the

GUI. The intent is to present enough information to provide the user of this document with a

starting point to understanding the program structure. The GUI provides a means of creating and

viewing the multi-zone model, and creates the PRJ file for use by CONTAM's simulation

engine, ContamX. The GUI also serves as a means to view the simulation results that are output

by ContamX.

3.2 Development Environment

ContamW is an event-driven program developed solely for the Windows platform using the

WIN32 Application Programming Interface (API) and written in the C programming language.

Version 2. 1 was developed using Microsoft Visual C++ versions 6.0 and .NET. As of the release

of this document, the source code consists of 87 c-code files (.c), 33 header files (.h), 8 context-

sensitive help header files (.hh), and 16 resource-related files. The graphical charting routines

were developed using a third-party charting tool OlectraChart 6.0. This software is required in

order to build the Visual Studio project.

3.3 Program Structure

The figure below shows the GUI which is made up of two windows - one “superimposed" on

top of another. The SketchPad window is the large white portion that is “superimposed" on the

larger Main window.

Titli

Tc

Figure - The CONTAMW GUI

79

Part 3 - ContamW Program Documentation

3.3.1 Main Program and Message Loop

Every Windows program must have a WinMainQ function which is the entry point of the

program. This function is equivalent to the main() function in a standard C program. In

ContamW, this function is located in the file contam.c. WinMainQ performs program

initialization and executes the main message loop of the program.

As this is an event-driven program, it contains a message loop that gets and dispatches messages

from and to the operating system respectively. This loop gets messages that are directed to the

ContamW program from the Windows message queue then dispatches the message back to the

operating system which then calls the appropriate window procedure of ContamW for

processing.

3.3.2 Window Procedures

Each window displayed by ContamW, including dialog boxes and property sheet pages, has an

associated window procedure. Window procedures are called by Windows after ContamW
dispatches messages associated with a particular window back to the operating system. These

messages contain parameters that indicate to the operating system which window procedure to

call, a message identifier, and message-specific parameters as required. Window procedures

contain sections of code known as message handlers that are executed when the window
procedure receives a particular message.

ContamW contains approximately 90 window procedures. Two of these procedures, WndProcQ
and SketchPadWndProcQ , are associated with the two main windows of the program and the

remaining procedures are associated with individual dialog boxes, property sheet pages and

miscellaneous windows that display charts and simulation results. WndProcQ handles the menu
and associated toolbar commands and passes keyboard messages to the SketchPad window
procedure SketchPadWndProcQ. SketchPadWndProcQ handles all SketchPad related commands
including drawing walls, ducts and controls and placing icons onto the SketchPad.

3.4 Program Data

Before describing the ContamW data structures, it is important to understand the basic

philosophy of the program. ContamW is not meant to depict an exact physical representation of a

building, but to portray a building in a manner that is representative of the multizone modeling

perspective. Therefore, the physical dimensions of the representations of building zones are not

important, but the interconnectivity or topology of the zones is important. The ContamW
SketchPad provides a means of describing a building in a manner that constrains the

representation to the multizone modeling domain.

3.4.1 SketchPad Data

From the users perspective, the SketchPad consists of a two-dimensional grid of equal-sized cells

in which icons can be placed. The SketchPad is actually represented as a set of global 2D arrays

having equal dimensions indicating the width (columns) and height (rows) of the SketchPad.

These arrays are used to indicate the symbols located on the SketchPad for each building level

and to maintain references to lists of data elements that contain the detailed information

describing the building elements that make up each building level. The following is a list of the

SketchPad arrays along with a description of the values stored in each array. Values are defined

in contain. h. In the list below, the first array in each set contains information related to the

80

Part 3 - ContamW Program Documentation

building level currently displayed on the SketchPad, and the second (preceded by _SL) contains

information related to the evel below the current level, i.e. the sublevel.

Sketch [row] [col]

SLSketch [row] [col]

Contains identifiers indicating a symbol for
Zones, Flow path, Simple AHS , Supply, Return,
Note, Source Sink and Exposure (o => empty cell)

Walls [row] [col]

SLWalls [row] [col]

Contains identifiers indicating the wall symbol.
Symbol values from WL EW to WL NESW.

Zones [row] [col]

SLZones [row] [col]

Indicates zone number for every cell on the
SketchPad

.

AMBT 32766 => ambient zone
ZNDF -2 => undefined zone
WALL 32767 => wall location

Paths [row] [col]

SLPaths [row] [col]

Contains the id number of each symbol that
represents a building component. The following
types of components warrant values in the Paths
array: Airflow paths, Ducts, Junctions

,
Zones and

Notes .

Ducts [row] [col]

SLDucts [row] [col]

Contains identifiers indicating a symbol for all
Ducts, Junctions and Terminals . Values are from
DCT_EW to IOJ_CB.

Links [row] [col]

SLLinks [row] [col]

Contains identifiers indicating controls-related
symbols. Values are from CL EW to CTRL P.

Ctrls [row] [col]

SLCtrls [row] [col]

Contains a ctrl/link number for each control
symbol in the corresponding Links array.

Table - Global SketchPad arrays

An example of a project file and associated SketchPad arrays is presented in spreadsheet form in

Appendix 3A at the end of this section.

81

Part 3 - ContamW Program Documentation

3.4.2 Building Organization

ContamW buildings (projects) are organized by building levels that contain building component

information. This organization is represented by a doubly linked list of level data structures

(LEV DATA) as illustrated in the figure below. This list is used to populate the SketchPad arrays

whenever the user selects a different level to display. A global pointer is used to access the

current level and the levels above and below the current level are accessed via each level's

pointer to the level above and below. Each level contains a pointer to a list of icon data for all of

the icons contained on the level. Icon data structures (ICON DAT) contain information that

includes the component number, icon identifier, and column and row in which the icon is located

on the SketchPad, i.e., in the SketchPad arrays.

LevO

LEV DATA LEV DATA LEV DATA

Figure - Schematic ofBuilding Level and Icon Data Storage

3.4.3 Building Component and Element Data

The data used to describe a building in ContamW is basically divided into two types: building

component and building element data. In terms ofhow the data is managed by ContamW - these

data are referenced-by-number (RefByNum) and referenced-by-name (RefByName)

respectively. RefByName data are referenced by a unique, user-defined name, and RefByNum
data are referenced by a number assigned by ContamW.

RefByNum data are those that are considered specific to a building (project) and include zones ;

airflow paths ; simple air handling systems ; duct segmentsJunctions and terminals ; source-sinks ;

occupants and controls. These components only exist in relation to a given building, i.e., they

physically relate to other components of the building and are represented on the SketchPad by

individual icons. RefByName data are those types of data that can be shared between building

components and even between different projects via ContamW libraries. RefByName elements

include airflow elements , ductflow elements , wind pressure profiles , species , source-sink

elements.filter elements , kinetic reaction elements , non-occupant schedules and annotations.

RefByNum data can refer to RefByName data, and more than one RefByNum component can

refer to the same RefByName element. For example an airflow path (e.g. a doorway) connects

two zones of a building is defined in part by its location within the building. The airflow

characteristics of this airflow path are represented by a pressure-flow model characterized by an

airflow element. There may be several doors having the same airflow characteristics; therefore,

each airflow path (e.g. door) can refer to the same airflow element.

Building component data are stored in linked-lists as shown in the figure below that illustrates

the concept for airflow paths and elements. These lists are referred to by and accessed through

82

Part 3 - ContamW Program Documentation

arrays of pointers (e.g. PathLisi) that are used to maintain the components in order according to

their location within the building. Building components are numbered starting at the top level in

the upper left hand comer of the SketchPad moving left to right and down the SketchPad then

proceeding down through each level in the same manner. Whenever a project file is saved,

reordering of the array of pointers and renumbering of the building components will be

performed as necessary .

Figure - Schematic ofAirflow Path Component (PATHDSC) and

Element (AFE DAT) Data Storage

The figure above shows some of the global variables that are used to maintain the list of airflow

paths (components) and airflow elements that are referenced by the paths. _PathList is the array

of pointers used to maintain the SketchPad order of the paths. _PcithsO is a pointer to the head of

the linked list ofPATHDSC stmctures. PathX is a pointer to the head of a list of paths

structures that have been deleted, but could be reused when new paths are added.

The routines used to create new paths are contained in the file paths, c. These routines are typical

of the building component management routines:

Path creation functions: pathnewf). pathjdflt('). pathjaddO. path_put()

Path deletion functions: path_del(). path delete f)

Path editing functions: path_old() . path_get()

The routines for managing airflow element related data are found in afedlg.c (airflow element

specific) and cutils.c (building elements in general).

Airflow element creation functions: afelmtjnewf). elmt insert!)

Airflow element deletion functions: elmt delete!)

Airflow element editing functions: afelmt_old(), elmt replacef)

These data are managed by a set of lower level routines that perform all memory
allocation deallocation for ContamW. These routines are located in the file heap.c. These

memory management routines are used to minimize the number of actual calls to the standard-C

mcilloct) andfree!) functions by maintaining memory used by ContamW in larger memory-

blocks with which the routines in heap.c operate.

83

Part 3 - ContamW Program Documentation

3.5 Program Logic

As previously indicated, ContamW is an event-driven program, which basically means that the

program functions that are executed depend on user-generated commands, i.e., user events.

These events fall into the following basic categories: saving/retrieving project files, drawing

building components, editing building components, running simulations and working with

simulation results. The following sections describe the program logic that handles these events.

3.5.1 Message (Event) Handlers

Selecting an item from the menu or double-clicking on a SketchPad icon are examples of events

for which message handlers are required. In ContamW, all menu selection events are handled by

the WMCOMMAND message handler WndProc_OnCommand() of WndProcQ. Each menu
selection is associated with a resource identifier that is used as a case selector of a switch

statement in the WM COMMAND message handler. For example, if the user selects the File-

Open command, the WM COMMAND message is sent with the identifier of the File-Open menu
resource IDM FILE OPEN. In the case of a double-click mouse event on the SketchPad

window, both the WMLBUTTONDOWN and WM LBUTTONDBLCLK commands are sent to

SPWndProc_OnLButtonDown() message handler of SketchPadWndProc().

3.5.2 Saving and Retrieving Project Files

CONTAM project files are ASCII files that maintain all information related to a CONTAM
project. The project file format is described in detail in the section Project File (,PRJ) . Project

file related commands are executed via the File menu and are handled within the

WM COMMAND message handler of the main window procedure WndProc(). The File menu
identifiers are all of the form IDMFILEX whereX is one of the following NEW , OPEN,

SA VE, SA VE AS, or EXIT. File input (reading) and writing (saving) are handled by the

prj readQ and prjsciveQ functions contained in the files prjrecid.c and prjsave.c. These two

functions call lower level functions each of which handles a specific section of the project file as

described in the project file documentation.

There are a few other features of note related to project file processing. If the user attempts to

open a project file of an older version, conversion functions will be called to convert to a format

compatible with the current version of the program. These routines are located in the file

c!0toc20.c. If the user clicks the OK button after viewing a building component data dialog box,

a global flag saveprjf is set to indicate that the file should be saved and a warning will be

displayed if the user attempts to exit the program with this flag set. Also, the project file will be

saved automatically when the user attempts to perform a simulation, because the simulation

program reads the project file and it is a separate executable from the GUI.

3.5.3 SketchPad Drawing

Icons are placed upon the SketchPad using either one of the four drawing tools or the popup icon

placement menu.

3. 5.3.1 Drawing Tools

There are four drawing tools: line and box for walls, ducts and control links. Tool selection is

performed via either the Tool menu or associated toolbar buttons. The message handlers

84

Part 3 - ContamW Program Documentation

contained in WndProcQ associated with each tool set a global flag to indicate which tool is

selected: bWcill, bBox , bDuct or bLink.

The actual drawing process is activated once the user clicks the left mouse button (or hits the

Enter key) at which point the drawing mode is activated and indicated by setting the flag

bDraw. When in the drawing mode, all mouse commands and keyboard arrow key commands
are captured by the SketchPad window and converted to the ContamW-specific message

CT DRAW handled by the function SPWndProc OnCtDrm v() . SPWndProcOnCtDrciwQ then

calls specific drawing functions depending on the selected drawing tool as indicated by the

drawing tool flags. Drawing is finalized by clicking the left mouse button activating the message

handler SPWndProc OnLButtonDownQ

.

This message handler will then call the drawing tool

dependant routines to validate the drawing and place the proper icons into SketchPad arrays. If

the drawing was valid then the screen can be updated to reflect the placement of the building

components, e.g., walls, ducts or control links. This is performed via the Inva/idateRect()

command that causes the SketchPad window to redraw or repaint itself. SketchPad
* k

painting
,,

is

performed via the WM PAINT message handler SPWndProc_OnPaint().

The following is a pseudo-code outline of the drawing process, and the following list indicates

the functions and their locations within the source code files.

85

Part 3 - ContamW Program Documentation

Select Tool

WndProc_OnCommand (IDM_TOOLS_DRAWWALL

{
_bWall = true;
SPWndProc_OnCtSwitchCursor (1);

}

Begin Drawing

SPWndProc_OnLButtonDown ()

{
if (!_bDraw

)
_bDraw = true;

}

Drawing

SPWndProc_OnKey (left
|

right
|

up

SPWndProc_OnMouseMove (x, y)

{
SendMessage (SketchPad, CT_DRAW,

}

Finish Drawing

SPWndProc_OnLButtonDown ()

{ if
(
_bDraw)

if (wall_check() == 0)

{
walls_set (0)

;

zones_set (0)

;

InvalidateRect (SketchPad)

}

}

User: selects drawing tool

// tool selection flag

// display drawing cursor

// User: clicks LMB

// set drawing flag

down
|

enter
|

esc)

dir, increment)

;

// User: clicks LMB

// validate wall drawing

// set icons in _Walls [] []

// set icons in _Zones [] []

// send WM_PAINT message

Pseudocode for the Wall Drawing Process

II

SketchPad Painting - Display of SketchPad arrays on the screen

SPWndProc_OnPaint () // SketchPad window WM_PAINT message handler

{

sketch_redraw (

)

{
for

(

for each cell of SketchPad)

{ sk_draw_symbol (

)

{
grblank ()

;

sk_draw_icon (

)

{ grputc(icon, color)

{ SetTextColor (color
)

;

TextOut (icon)

;

/ / set background color of icon

/ / get icons from SketchPad arrays

// Windows API function call

// Windows API function call

TextOutQ

This is a Windows Graphics Device Interface (GDI) function that outputs text to a given device

context which in this case is the SketchPad window. The fonts for the device (WALTONOl -1 6.FON)

are initialized at program startup by the lnitFont() function call from within SPWndProc_OnCreate().

The ContamW installation program installs these fonts into the system fonts folder.

86

Part 3 - ContamW Program Documentation

Function File Name

WndProc_OnCommand()

IDM TOOLS DRAWWALL WndProc.c

SPWndProc OnCtSwitchCursor(

)

SPWndProc_OnLButtonDown()

SPWndProc OnKey()

SPWndProc OnMouseMove()

SPWndProc_OnCtDraw()

SPWndProc OnPaint()

SPWndPro.c

walls_set()

zones_set()

sketch_redraw(

)

sk draw symbol()

sk draw icon()

sketch.

c

wall check() walldraw, c

grblank()

grputc()

InitFont()

wutils.c

SetTextColor()

TextOut()

Windows API

Table - SketchPad Drawing Related Functions

3. 5.3.2 Icon Placement

Some building components are drawn onto the SketchPad via the pop-up icon placement menu.

This menu contains a list of building components that are represented by specific icons. The

menu selections are enabled/disabled based on context-sensitive rules for icon placement.

1 lie menu is activated when the user clicks the right mouse button (RMB) on the SketchPad.

This causes the WMjONRBUTTONDOWN message to be sent to the SketchPad window which

is handled by the SPWndProc OnRButtonDownt

)

message handler. This in turn calls both

SetPopMenuQ and TvackPopMemd) functions. SetPopMenuf) is a ContamW function that

implements the context-sensitive rules of icon placement, and TvackPopMemd

)

is a Windows
API function that displays the actual menu wherever the mouse pointer is when the RMB is

clicked. When the user selects an item from the icon placement menu a WM COMMAND
message is sent to the SketchPad window along with a menu command identifier. The

SPWndProc OnCommandO message handler function contains a case for each icon placement

menu selection of the form IDM POP1_X where X stands for ZONE, AMBIENT, PHANTOM,

PA TH. AHS, INLET. OUTLET, SS. EXPOSURE , or NOTE. Each of these message handlers

places the corresponding icon identifier in the appropriate SketchPad array then calls the

sk draw symbol() function to display the new icon on the SketchPad window. The icon will be

red in color to indicate that the icon is undefined, i.e., it is not yet associated with a building

component. At this point a value indicating an undefined building component will also be placed

into the appropriate SketchPad arrays if necessary, e.g., a value of ZNDF (-2) indicating an

undefined zone will be placed in the Paths array and in every cell of the Zones array that is

enclosed by the walls immediately surrounding the zone icon.

87

Part 3 - ContamW Program Documentation

3.5.4 Creating and Editing Building Components

Once an icon is placed on the SketchPad a building component must be created and associated

with it. This is done via dialog boxes and property sheets associated with the type of building

component represented by the particular icon.

When the user double clicks on an undefined icon on the SketchPad the WMLBUTTONDOWN
message is sent to the SketchPad window with thefDoubleClick parameter set to true. The

SPWndProcOnLButtonDownQ function checks the SketchPad arrays in a hierarchical fashion to

determine the type of icon for which to display properties. Having determined the type of

undefined icon, a temporary building component data structure is allocated with default values.

This temporary structure is passed as a parameter to the associated component dialog box

procedure (a type of window procedure) to be modified as required by the user. If the user selects

‘"OK" on the dialog box, control returns to the SPWndProcOnLButtonDownQ message handler,

and a permanent copy of the data structure representing the building component is made and

added to the corresponding list of building components (see Building Component and Element

Data). At this point a number value is assigned to the building component by ContamW and

placed into the appropriate SketchPad array at the proper location.

Editing of existing building components is accomplished in much the same way as creating a

new one. The user double clicks on the desired icon and instead of creating a new, default

component, a copy is made of the existing component and sent to the appropriate dialog box

procedure.

3.5.5 Running Simulations

ContamW is used to develop a set of equations that represents a building as a multizone airflow

and contaminant transport network. The GUI provides the means to develop a schematic

representation of the building in the level of detail required by the multizone modeling paradigm.

The equation solver then takes this schematic representation and converts it into a set of airflow

and contaminant transport equations.

The equation solver, contamx2.exe , is a stand-alone executable that operates directly on the

project file created using the ContamW GUI. Simulation parameters are input by the user via the

Simulation Parameters property sheet accessed from the Simulation->Set Simulation Parameters

menu command. A simulation is run when the user selects Simulation->Run from the menu
which causes the IDM SIMULATION RUN case of the WndProcOnCommandQ message

handler function to be executed which calls the function ContamSimQ located in the source file

SimDIgX2.c. ContamSimQ uses the CreateProcessQ Windows API function to execute

contamx2.exe in another thread. Complete documentation of the solver is provided in Part 2 -

ContamX Program Documentation .

3.5.6 Viewing Simulation Results

The equation solver creates an output file having the same name as the project file but with the

.sim extension. The GUI can be used to display these results. Results can also be exported to tab-

delimited text files for importing into spreadsheet programs for more detailed analysis or written

to report files that are organized for legibility. There are several methods of viewing results via

the GUI as described below.

88

Part 3 - ContamW Program Documentation

3.5. 6.

1

SketchPad Results

SketchPad results - in the form of color-coded lines to indicate the relative magnitude and

direction of pressure drop and airflow rate - can be displayed for each airflow path one level and

one time step at a time (See figure below). If a matching .sim file is available, a global variable

_resready is set to true, and the user can select to view/hide the results display and select

different time steps of transient results to display via the set of View menu commands which are

handled by the IDM_VIEW_X cases of the function WndProc_OnCommand(). The SketchPad

results are read from the .sim file by the age_of_air() function for the current time step as

maintained in the global variable _time_index. The actual display of results is handled within the

SPWndProcjOnPaintQ message handler function which calls res_dsp_level() that performs

scaling of the lines and calls lower level display functions grlinevwf) and grlinehwQ that in turn

call Windows GDI functions to perform the actual graphical display. Along with the color-coded

lines, the value and direction of the airflows and pressure drop of the individual airflow paths are

displayed in the status bar for the currently highlighted airflow path icon on the SketchPad. This

is done via the sketch _status() function which is called when several events occur including

change of highlighted SketchPad cell via keyboard or mouse movement, changing the current

level displayed or changing between SketchPad display modes (normal, results, wind and links).

(CONTAMW2 - TeslCtrlJJLS pij

File Edit View Level Tools Data Weather Simulation Help

& y A fla \ ^ "1

J

N0TE(5): ULS: Fan ON if Cone > 400 J anOI /05: 00:00 Level levl: 1 of 1

Figure - SketchPad Displaying Simulation Results ofAirflow (blue lines) and Pressure

Difference (red lines) for Airflow Paths

89

Part 3 - ContamW Program Documentation

Function File Name

WndProc OnCommand(

)

IDMVTEWX WndProc.

c

SPWndProc OnPaint(

)

SPWndPro.c

age_of_air() flowsout.c

res_dsp_level(

)

resultsw.c

grlinevw(

)

grlinehw(

)

wutils.c

sketch_status(

)

bsketch.c

Table -SketchPad Results Display Functions

3. 5. 6.2 Results Display Window

Users may choose to display/hide a separate results display window (shown in the right side of

the figure below). This window displays contaminant concentrations results and net airflow rates

between adjacent zones of the currently highlighted zone icon on the SketchPad for steady state

simulations and for the current display time step for transient simulations. Occupant related

results can also be displayed in this window for highlighted exposure icons. This window is a

modeless dialog box for which a global handle ghDlgResults is maintained to which messages

are dispatched from the main message loop. The dialog box procedure for this window
SSResultsDlgProc() is located in the file SSResDlg.c. This window is updated when appropriate

by sketch statusQ which sends messages to this window via the g hDlgResults handle.

|@!CUNIAMW2 T estClrl_ULS.prj

File Edit View Level Tools Data Weather Simulation Help

i\ l^la 1
& | ^|ial \|d|^|H t|t| &

1

n

Zone(4): ZoneJ / levl, T: 20 T.P: 41.8023 Pa Jan01/05:00:00 Level levl: 1 of 1

T n|,:|

CONTAMW Results Display Sll

Building Component

Type: Zone Number: 4

Name: ZoneJ Level: levl

Zone Airflow Results [smJ/s]

Figure -Results Display Window

90

Part 3 - ContamW Program Documentation

3.5. 6.

3

Result Graphs

Users can use the GUI to display graphs of transient simulation results (see figure below) via the

Simulation->Plot. . . menu commands. These commands are handled by the

IDM_SIMULATION GRAPH

X

cases of the WndProc_OnCommand(), where X is either

CONTAM, AIRFLOW or EXPOSURE. Each of these cases will in turn creates a dialog box

having associated dialog box procedures GraphRsltContamDlgProc ()

,

GraphRsltAirflowDlgProcO and GraphRsltExposDlgProcQ located in the files GrphCtm.c,

GrphFlow.c and GrphExp.c respectively. These procedures and others within these files provide

for the user input of chart options, allocated memory for data to be plotted and creation and

display of the windows in which the charts are displayed. The charts are created and displayed

using third party charting software know as Olectra Chart. Olectra Chart is implemented as a

DLL, olch2d32.dll, whose import library olch2d32.lib is included in the project along with other

related header files: oc_color.h, olch2d.h, olch2dcm.h.

|gCONTAMW2 TestCtrLULS.pij im
File Edit View Level Tools Data Weather Simulation Help

ii|i»|y x|§a|ffl| \\nNH t|t| “1
|

ll

1

j

Transient Contaminant Results m n x

4
| {

N0TE(5): ULS: Fan ON if Cone > 400 JanOI

00 03 06 09 12 15 18 21 00

Time of Day [Tour]

Figure - Transient Contaminant Results Graph

91

Appendix 3A

Appendix 3A
This appendix displays the SketchPad arrays presented in section 3.4.1. All of the spreadsheets

presented in this appendix refer to the figure below, and each spreadsheet represents part of the

arrays in which SketchPad data is stored. The associated project file, SParrays.prj
,
is installed in

the samples subdirectory of the CONTAM 2.1 installation directory.

SketchPad used to demonstrate SketchPad array data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 14 11 11 11 11 11 19 11 11 11 11 11 15 0 0

4 0 0 12 0 0 0 0 0 12 0 0 0 0 0 12 0 0

5 0 0 12 0 0 0 0 0 12 0 0 0 0 0 12 0 0

6 0 0 12 0 0 0 0 0 12 0 0 0 0 0 12 0 0

7 0 0 12 0 0 0 0 0 12 0 0 0 0 0 12 0 0

8 0 0 12 0 0 0 0 0 12 0 0 0 0 0 12 0 0

9 0 0 17 11 11 11 11 11 21 11 11 11 11 11 16 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Walls[][] array ofSParrays.prj

92

Appendix 3A

1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 130 0 0 0 0 0 0

7 0 0 0 0 0 0 0

8 0 0 0 5 0 0 0

9 0 0 0 0 0 23 0

10 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0

Sketchi][]

1 2 3 4 5 6 7

1 a a a a a a a

2 a a a a a a a

3 a a W W W W W

4 a a W 1 1 1 1

5 a a W 1 1 1 1

6 a a W 1 1 1 1

7 a a W 1 1 1 1

8 a a w 1 1 1 1

9 a a w w W w W

10 a a a a a a a

11 a a a a a a a

12 a a a a a a a

13 a a a a a a a

14 a a a a a a a

15 a a a a a a a

Zones[][]

9 10 11 12 13 14 15 16 17

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 133 0 0 0

0 0 0 0 0 131 0 0 0

0 0 0 0 0 0 0 42 0

0 0 0 0 0 129 0 0 0

0 5 0 0 0 128 0 0 0

0 0 0 23 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

ofSParrays.prj

9 10 11 12 13 14 15 16 17

a a a a a a a a a

a a a a a a a a a

w W W W W W w a a

w -2 -2 -2 -2 -2 w a a

w -2 -2 -2 -2 -2 w a a

w -2 -2 -2 -2 -2 w a a

w -2 -2 -2 -2 -2 w a a

w -2 -2 -2 -2 -2 w a a

w W W W W W w a a

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a

a = AMBT = 32766

W = WALL = 32767

ZNDF = -2 (undefined zone)

ofSParrays.prj

8

o

0

0

133

131

0

129

128

0

0

0

0

0

0

0

array

8

a

a

W

1

1

1

1

1

W

a

a

a

a

a

a

array

93

2

o

o

0

0

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0

0 -1 0 0 0 1 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 2 0 -2 0 0 0 0

0 0 0 3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Paths[7/7 array ofSParrays.prj

3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0

0 162 0 0 0 0 0 162 0 0 0 0

0 146 0 0 0 0 0 144 0 0 0 0

0 154 0 0 0 0 0 144 0 0 0 0

0 144 0 0 0 0 0 144 0 0 0 0

0 162 0 0 0 . 0 0 162 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Ducts[7/7 array ofSParrays.prj

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

o

o

0

0

0

0

0

0

0

0

0

0

0

0

0

7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

_Ctrls[][] array ofSParrays.prj

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 . 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 181 0 0 0 0 0 177 0 0

0 0 0 0 0 179 0 0 0 0 0 169 0 0

0 0 0 0 0 185 170 168 168 168 168 174 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Links[][] array ofSParrays.prj

References

References
1. Emmerich, S.J., W.S. Dols, and J.W. Axley. Natural Ventilation Review and Planfor Design

and Analysis Tools. NISTIR 6781, National Institute of Standards and Technology. 2001.

2. Dols, W.S. and G.N. Walton. CONTAMW 2.0 User Manual. National Institute of Standards

and Technology. DRAFT 2002.

3. Axley, J.W. Application ofNatural Ventilationfor U.S. Commercial Buildings. GCR-0 1-820

NISTIR 6781, National Institute of Standards and Technology. 2001.

4. Axley, J.W. Residential Passive Ventilation Systems: Evaluation and Design. AIVC
Technical Note 54. Coventry, AIVC.

5. ASHRAE 2001. ASHRAE Handbook - 2001 Fundamentals , Atlanta, GA.

6. Irving, S. and E. Uys. CIBSE Applications Manual: Natural Ventilation in Non-domestic

Buildings. 1997, CIBSE: London.

7. Marion, W. and K. Urban. User's Manualfor TMY2s. National Renewable Energy

Laboratory, 1995.

8. Press, W.H., S.A. Teukolsky, W.T. Vetterling & B.P. Flannery. 1992. Numerical Recipes in

C: the Art ofScientific Computing, Second Edition , Cambridge University Press.

96

Acknowledgments

Acknowledgments
This effort was supported by the Naval Surface Warfare Center Dahlgren Division under

Military Interdepartmental Purchase Request # N001 78-02-MP-00374.

97

