The Simulation Research Group
Applied Science Division
Lawrence Berkeley Laboratory
One Cyclotron Road
Berkeley, California 94720
Editor: Kathy Ellington
Bldg. 90 — Room 3147

Table of Contents
Hands On (items of interest).......... 1
“System Type SZRH” [An excerpt
from the new Basic Manual] 2
Index to the User News.................. 6
DOE-2.1D Training Seminar 9
DOE-2 Directory 10

Hands On
Converting Metric Weather
Dr. Vladimir Bazjanac, Berkeley, CA, can assist DOE-2 users with metric weather tapes. Source metric weather files can be converted to unpacked weather tapes (English units) and packed in TRY format for use with DOE-2, providing that the originals have data arranged in TRY format. Special characters on the source, caused by old-style overprinting, are legal and are properly converted. Metric weather files must be submitted in ASCII on diskette or magnetic tape. If possible, a meteorological data sheet, with original 24-hour observations for a randomly selected day recorded on the sheet, should accompany the diskette or magnetic tape; this is needed for weather tape verification. For more information phone (415) 548-4440.

Death, Taxes, and the NTIS!
Just like the inevitable “Death and Taxes”, every year NTIS raises the price of DOE-2 documentation. Please check the inside back cover of this newsletter for new prices.

The good news from NTIS is that new 2.1D manuals are available. Prices and order numbers for new documentation are on the inside back cover of this newsletter.

Time To Make Travel Plans
Feb 12-16 — Controls: Operations and
Maintenance
Part of a Ten-Course Series on Air Conditioning Design. Sponsor: University of Wisconsin.
Contact: Engineering Registration, The Wisconsin Center, 702 Langdon St., Madison, WI 53706. Phone: (608) 262-1299.

March 19-21 — Energy Technology Conference
Exposition
to be held in Washington, D.C. Sponsor:
Government Institutes. Contact: ETC,
Government Institutes, 966 Hungerford Drive
#24, Rockville, MD 20850-1714.
Phone: (301) 251-9250.

This work was supported by the Assistant Secretary, Conservation and Renewable Energy, Office of Buildings and Community Systems; Building Systems Division, United States Department of Energy, Contract DE-AC03-76SF0098.
DOE-2.1D Basic Manual

The Simulation Research Group is in the process of preparing a Basic Manual, which will cover the essentials of preparing standard DOE-2 inputs. The Basic Manual is scheduled for completion mid-1990. It will be a stand-alone piece of documentation directed at the new user. Availability of the Manual will be announced in the User News; it will be offered for sale through the National Technical Information Service.

We are planning to excerpt sections from the Basic Manual chapter on System Types in this issue and in the next three issues of the User News. For each system type the following information will be presented: (1) a short description of the system; (2) a schematic diagram of the system, on which we have keyed the system components to their associated keywords; (3) a suggested minimal input for a 1-zone building; and (4) a listing of additional capabilities for the system and the keywords that enable them.

In this issue we are starting with system type SZRH. We plan to present system types VAVS, PIU, and HP in Vol. 11, No. 1 [Spring]; types PSZ, PMZ and PVAV in Vol. 11, No. 2 [Summer]; and types PTAC, TPFC and RESYS in Vol. 11, No. 3 [Fall].

In order to give users a clearer idea of what we are proposing for the Basic Manual, printed below is an abridged Table of Contents. We encourage your suggestions for additional topics.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Introduction</th>
<th>System Types (minimal input)</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is DOE-2</td>
<td>SDL Input Instructions</td>
</tr>
<tr>
<td>What does a DOE-2 Run Look Like?</td>
<td></td>
</tr>
<tr>
<td>Program Documentation</td>
<td></td>
</tr>
<tr>
<td>DOE-2 Methodology</td>
<td></td>
</tr>
<tr>
<td>Structure of the DOE-2 Program</td>
<td></td>
</tr>
<tr>
<td>Uses for DOE-2</td>
<td></td>
</tr>
<tr>
<td>How Valid is DOE-2</td>
<td></td>
</tr>
</tbody>
</table>

BUILDING DESCRIPTION

LANGUAGE (BDL)

<table>
<thead>
<tr>
<th>BDL Instructions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenced Commands</td>
<td></td>
</tr>
<tr>
<td>and U-names</td>
<td></td>
</tr>
<tr>
<td>LIKE Keyword</td>
<td></td>
</tr>
<tr>
<td>Schedules</td>
<td></td>
</tr>
</tbody>
</table>

LOADS

<table>
<thead>
<tr>
<th>Introduction</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation of Input</td>
<td></td>
</tr>
<tr>
<td>LDL Input Instructions</td>
<td></td>
</tr>
</tbody>
</table>

SYSTEMS

<table>
<thead>
<tr>
<th>Introduction</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>General Discussion of Systems</td>
<td></td>
</tr>
</tbody>
</table>
Single-Zone Fan System w/Optional Subzone Reheat (SZRH)

The single-zone type fan system (with optional subzone reheat) is illustrated in the schematic below. In its most basic configuration, the system provides constant volume, forced air heating and cooling for a single zone (plus subzones) from an air-handling unit containing a heating coil, a cooling coil, filters (not shown), and a supply fan. Exhaust fan(s) are optional for any or all zones. The temperature of discharge air is controlled from a thermostat that senses space conditions in the control zone. This zone is specified as the first zone entered under the keyword ZONE–NAMES. The system may be small and located within the space to be conditioned, or it may be remotely located with ducted air distribution. It may provide outside air ventilation, or merely recirculate conditioned air.
Suggested Minimal Input for SZRH with Economizer:

INPUT SYSTEMS ..

SYSMTE SCHEDULES

FANS-ON = SCHEDULE THRU DEC 31 (WD) (1.7)(0)(8,18)(1) (19,24)(0) (WEH) (1.24)(0) ..

COOLSETPT = SCHEDULE THRU DEC 31 (WD) (1.7)(99)(8,18)(76) (19,24)(99) (WEH) (1.24)(99) ..

HEATSETPT = SCHEDULE THRU DEC 31 (WD) (1.7)(55)(8,18)(72) (19,24)(55) (WEH) (1.24)(55) ..

OFFICE = ZONE
DESIGN-HEAT-T = 72
DESIGN-COOL-T = 74
HEAT-TEMP-SCH = HEATSETPT ①
COOL-TEMP-SCH = COOLSETPT ②
OA-CFM/PER = 15 ..③

AC-SYST = SYSTEM
SYSTEM-TYPE = SZRH
MAX-SUPPLY-T = 110 ①
MIN-SUPPLY-T = 55 ③
NIGHT-CYCLE-CTRL = CYCLE-ON-FIRST ③
FAN-SCHEDULE = FANS-ON ③
ECONO-LIMIT-T = 68 ③
OA-CONTROL = TEMP ③
ZONE-NAMES = (OFFICE) ⑤

SYSTEMS-REPORT
SUMMARY = (SS-A, SS-O)

END ..

COMPUTE SYSTEMS ..

INPUT PLANT ..

PLANT-REPORT SUMMARY = (BEPS) ..

SHW = PLANT-EQUIPMENT TYPE = DHW-HEATER SIZE = -999 ..
HWG = PLANT-EQUIPMENT TYPE = HW-BOILER SIZE = -999 ..
CHR = PLANT-EQUIPMENT TYPE = HERM-REC-CHLR SIZE = -999 ..

PLANT-PARAMETERS
BOILER-FUEL = NATURAL-GAS
HERM-REC-COND-TYPE = AIR ..

END ..

COMPUTE PLANT ..
Additional capabilities for SZRH system:

1) To enable an exhaust fan add the keywords EXHAUST-CFM = Value (CFM) and EXHAUST-KW = Value (.0001 is typical) to the ZONE keyword list.

2) To enable a humidifier which requires heat to evaporate water into the air add MIN-HUMIDITY = Value (25% is typical) to the SYSTEM keyword list.

3) To enable heat recovery to exchange relief air heat with outside air heat add RECOVERY-EFF = Value (0.6% is typical) and RETURN-KW= Value (.0003 is typical) to the SYSTEM keyword list.

4) To disable the economizer change the OA-CONTROL = TEMP to OA-CONTROL = FIXED.

5) To enable reheat coils at subzones add
 REHEAT-DELTA-T = Value (°F)
 to the SYSTEM keyword list.

6) To disable the mechanical cooling year-round, so that the system operates as a Heating and Ventilating Unit, insert a schedule like this:

 COOL-OFF = SCHEDULE THRU DEC 31 (ALL) (1.24) (0) ..

 and add COOLING-SCHEDULE = COOL-OFF to the SYSTEM keyword list.
Index to the DOE–2 User News

Volume 1, No. 1 (August 1980) through Volume 10, No. 4 (Winter 1989)

KEY: The Index lists User News volumes, issues, and page numbers as follows: Name of Article, in parenthesis is the program version that was current when article appeared, then Volume, Number (No. 1=Spring, No. 2=Summer, No. 3=Fall, No. 4=Winter), and page number.

For example, the entry "Advanced Simulation (2.1C) . . . 7.4.4-8" tells the reader that the article titled "Advanced Simulation", which appeared when DOE-2.1C was the current version of the program, will be found in User News Volume 7: Number 4, on pages 4 through 8.

ADVANCED SIMULATION
Advanced Simulation (2.1C) . . . 7.4.4-8
DOE-2 and the Next Generation (2.1C) . . . 6.4.1-2
IBPSA (2.1C) . . . 8.2.4-7

BUGS
in DOE-2.1
About bugs . . . 1.1.3
BDL . . . 1.1.4-6, 1.2.6
LOADS . . . 1.1.6
SYSTEMS . . . 1.1.7, 1.2.7-8
PLANT . . . 1.1.9-10, 1.2.8
Weather . . . 1.2.6

in DOE-2.1A
All bugs . . . 3.4-3.6
BDL . . . 2.1.3-6, 2.2.9-10, 2.3.5, 3.1.9-10, 3.1.13, 3.3.3
LOADS . . . 2.1.7, 2.3.5, 3.1.10
SYSTEMS . . . 2.1.8-12, 2.2.10-11, 2.3.5, 3.1.10-12, 3.2.5, 3.3.3
PLANT . . . 2.1.12-14, 2.3.5, 3.1.12
ECON . . . 2.2.11
Weather . . . 2.1.6

in DOE-2.1B
All bugs . . . 5.4.3-6
BDL . . . 4.4.5, 5.1.4
LOADS . . . 4.4.6, 5.1.5
PLANT . . . 4.4.6, 5.1.5
SYSTEMS . . . 4.4.6, 5.1.5
Weather . . . 4.4.6, 5.1.5

in DOE-2.1C
All bugs . . . 9.3.4-16
BDL . . . 7.1.9-33, 9.1.4
ECON . . . 7.1.9-33
LOADS . . . 7.1.9-33, 7.3.13-14, 8.1.5, 8.4.5
PLANT . . . 7.1.9-33, 8.4.6
Reports . . . 7.1.9-33, 8.1.6
SYSTEMS . . . 7.1.9-33, 8.4.4-5, 9.1.3-5
Weather . . . 7.1.9-33, 8.2.3

DAYLIGHTING
Glazing Optimization Study (2.1A) . . . 3.3.4-5
Daylighting Network (2.1C) . . . 6.1.1-2
SUPERLITE (2.1C) . . . 8.2.1

Seeing Daylight in So. Calif. (2.1C) . . . 6.3.1
Sunspace/Atrium Model in 2.1C . . . 5.4.1-2

DOCUMENTATION
Basic Manual . . . System type: SZRH . . . 10.4.2-5
Updates to Documentation
BDL Summary . . . 1.1.11-14, 1.2.9-12, 2.1.15, 4.4.3, 6.4.4, 9.4.2-3
Engineers Manual . . . 7.1.7-8
Reference Manual . . . 1.1.11-14, 2.1.16-20
4.1.4, 4.4.3, 5.1.3, 5.4.7
Sample Run Book . . . 1.1.11-14, 8.3.5, 9.4.2-3
Supplement . . . 4.4.3, 5.1.3, 6.4.4
Users Guide . . . 1.1.11-14, 2.1.16

DOE–2 (program-general topics)
Analyze DOE-2 Outputs Quickly (2.1C) . . . 10.2.7-12
ASHRAE/IES Standard 90 (2.1C) . . . 6.1.3
Cooling Systems, How to Size (2.1C) . . . 10.1.2-8
DOE-2 and Research at LBL (2.1A) . . . 3.2.1-8
Energy Efficiency in Singapore (2.1B) . . . 5.1.1-2
New Features in 2.1A (2.1A) . . . 2.1.1, 2.2.1
New Features in 2.1B (2.1B) . . . 2.1.1, 2.2.1
New Features in 2.1D . . . 9.2.3-6
Using DOE-2 in the Design Process (2.1A) . . . 3.2.4
Discovering the Unexpected w/Doe-2 (2.1C) . . . 7.1.3-6
Sky Simulator at LBL (2.1B) . . . 4.2.3

DOE–2 (program-specific topics)
Atrium Buildings, How to Model (2.1C) . . . 7.3.2-7
Custom Weighting Factors (CWF)
Automatic CWF (2.1A) . . . 2.2.2-3
Input Guidelines (2.1) . . . 1.11-15-16
Caution and Error Messages (2.1) . . . 1.2.2-3
DSNFILE, File structure for (2.1A) . . . 3.1.6-8
Economic Evaluation Methods (2.1A) . . . 3.1.3-5
ECONOMICS, Electric Rate Structure (2.1C) . . . 5.3.1-3
Electrical Generation Strategies (2.1B) . . . 4.2.1-2
Functional Values, Development of (2.1B) . . . 3.4.1-2
Glazing Optimization Study (2.1A) . . . 3.3.4-5
Graphs from DOE–123 (2.1C) . . . 10.3.2-4
Ice Storage Systems, How to Model (2.1C) . . . 8.1.2-5
LDSOUT, File structure for (2.1A) . . . 3.1.6-8
Metric Option in 2.1C . . . 4.3.1
Output Reports (2.1A) . . . 2.2.4-6
PLANT, Direct Cooling in (2.1A). 31.2
Power Induction Units (2.1B). 41.2
Reports (Upgraded) in 2.1B. 44.1-2
Schedules, Preparation of (2.1B). 41.3, 42.4; 9.3.2-3
Systems, Developments in (2.1C). 5.3.3-4
SYSTEMS, Sizing Option in (2.1A). 2.3.3
Stud Wall Construction (2.1A). 2.3.4
Sample Run Book Overview (2.1C). 5.2.1
Sunspace/Atrium Model in 2.1C. 5.4.1-2
VAV. Elevated Supply Air Temps (2.1B). 43.2-3
VAV Fan Sizing (2.1A). 2.2.7-8
Weather, Processing Nonstandard (2.1C.D). 10.3.2-6

DOE-2.1

Articles related to Version 2.1
Custom Weighting Factors
Input Guidelines. 1.1.15-16
Caution and Error Messages. 1.2.2-3
WRISC. 1.2.4

BUGS
About bugs. 1.1.3
BDL. 1.1.4-6; 1.2.6
LOADS. 1.1.6
SYSTEMS. 1.1.7; 1.2.7-8
PLANT. 1.1.9-10; 1.2.8
Weather. 1.2.6

DOCUMENTATION updates
BDL Summary. 1.1.11-14; 1.2.9-12
Reference Manual. 1.1.11-14
Sample Run Book. 1.1.11-14
Users Guide. 1.1.11-14

LOADS
EQUIPMENT – KW. 1.1.19
verification reports. 1.1.17-18
passed from SYS to PLT. 1.1.17
SHADING COEF. 1.1.17
Schedules. 1.2.14

PLANT
BEPS (report). 1.1.20
minimum input. 1.1.20
HOT-WATER. 1.2.13

SYSTEMS
COOL-CONTROL. 1.2.13
EQUIPMENT KW. 1.1.19
MIN CFM RATIO. 1.1.19
RETURN CFM. 1.2.13
PTAC. 1.2.13
SYSTEM-FANS. 1.2.13
thermostat. 1.2.14

WEATHER
Tapes. 1.1.17

DOE-2.1A

Articles related to Version 2.1A
Automatic Custom Weighting Factors. 2.2.2-3
CIRA. 3.2.2
Direct Cooling in PLANT. 3.1.2
DOE-2 vs BLAST Comparison. 3.3.1-3
DOE-2 vs CERL Data for VAV and Reheat. 3.2.3
DOE-2 on a Microcomputer. 2.3.1-2
DOE-2 and Research at LBL. 3.2.1-8

Economic Evaluation Methods. 3.1.3-5
Fan Sizing for VAV Systems. 2.2.7-8
File Structure for LDSOUT and DSNFIL. 3.1.6-8
Glazing Optimization Study. 3.3.4-5
Output Reports. 2.2.4-6
New Features in 2.1A. 2.1.1; 2.2.1
Sizing Option in SYSTEMS. 2.3.3
Stud Wall Construction. 2.3.4
Using DOE-2 in the Design Process. 3.2.4

BUGS
All bugs. 3.4.3-6
BDL. 2.1.3-6; 2.2.9-10; 2.3.5, 3.1.9-10;
3.1.13, 3.3.3
LOADS. 2.1.7, 2.3.5, 3.1.10
SYSTEMS. 2.1.8-12; 2.2.10-11; 2.3.5,
3.1.10-12; 3.2.5, 3.3.3
PLANT. 2.1.11-14; 2.3.5, 3.1.12
ECON. 2.2.11
Weather. 2.1.6

DOCUMENTATION updates
BDL Summary. 2.1.15
Reference Manual. 2.1.16-20
Users Guide. 2.1.16

ECONOMICS
symbol table. 2.1.21
INCREMENTAL- INVESTMENTS. 2.2.13

LOADS
building shades. 2.3.6
DHW heater. 2.1.22
DHW temp. 2.1.12
heat recovery. 2.2.12
MULTIPLIER. 2.3.6
symbol table. 2.1.21

PLANT
BEPS (report). 2.3.6
cooling towers. 2.2.12
equipment combinations. 3.2.6
symbol table. 2.1.21

SYSTEMS
ABORT command. 2.1.22
DDS system. 3.1.13
residential ground water heatpump. 3.2.6
sizing/behavior of systems. 2.1.22-23
symbol table. 2.1.21

DOE-2.1B

Articles related to Version 2.1B
Electrical Generation Strategies. 4.2.1-2
Elevated Supply Air Temps. VAV. 4.3.2-3
Energy Efficiency in Singapore. 5.1.1-2
Functional Values. Development of. 3.4.1-2
New Features in 2.1B. 2.1.1; 2.2.1
Powered Induction Units. 4.1.2
Preparing Schedules. 4.1.3; 4.2.4
Sky Simulator at LBL. 4.2.3
Upgraded Reports in 2.1B. 4.4.1-2

BUGS
All bugs. 5.4.3-6
BDL. 4.4.5, 5.1.4
LOADS. 4.4.6, 5.1.5
SYSTEMS. 4.4.6, 5.1.5
DOCUMENTATION updates
BDL Summary.. 64.4
Engineers Manual. 71,7.8
Supplement. 64.4

LOADS
run times 2.1B vs 2.1C. 71.2
symbol table full. 9.2.2
SET-DEFAULT, ROOF + EXT-WALL. 8.3.5

SYSTEMS
bypass system. 6.1.3
specifying occupancy. 6.4.2
BEPS (hourly report variable). 6.4.2
warmup cycle. 8.3.5
VVT systems. 9.1.2

DOE-2.1D
Articles related to Version 2.1D
New Features in 2.1D. 9.2.3-6
BDL Summary. 9.4.2-3
Sample Run Book.. 9.4.2-3

ECONOMICS
INCREMENTAL-INVESTMENTS (21A) .22.13
New Electrical Rate Structure (21C). 5.3-1-3
symbol table (21A). 21.21

LOADS
building shades (21A). 23.6
EQUIPMENT-KW (21). 11.19
daylighting (21B). 5.4.7
DHW heater (21A). 21.22
DHW temp (21A). 21.12
heat recovery (21A). 22.12
hourly report variables (21B). 4.1.5
MULTIPLIER (21A). 23.6
runtime 2.1B vs 2.1C. 7.1.2
schedules (21). 11.2.14
SET-DEFAULT, ROOF + EXT-WALL (21C). 8.3.5
SHADING COEF (21). 11.1.7
symbol table (21A). 21.21
symbol table full (21C). 9.2.2
SYSTEMS to PLANT (21). 11.1.7
verification reports (21). 11.1.17-18

MICROCOMPUTER PROGRAMS
DOE-2 Related
DOE-2 on a Microcomputer (21A) .23.1-2
Graphs from DOE2 (21C).10.3.2-4
MICRO-DOE2 (21C). 7.4.2-3
PC-DOE Overview (21C). 7.2.2-3
Quick Analysis of Outputs (21C). 10.2.7-12
Using PC-DOE (21C). 7.2.4-5

Other
ADM-2 (21C). 7.2.6-9
CIRA (21A). 3.2.2
Microcomputer Update (21C). 61.2
SUPERLITE (21C). 82.1
WINDOW-20 (21C). 84.2-3
WINDOW-31 (21C). 10.2.5-6
PEAR (21C). 8.2.2
WRISC (21). 12.4
PLANT
BEP S (report) (2.1) .1.1.20
BEP S (report) (2.1A) .2.3.6
BEP S (lighting) (2.1B) .5.4.6
cooling towers (2.1A) .2.2.12
Direct Cooling in PLANT (2.1A) .3.1.2
equipment combinations (2.1A) .3.2.5
HOT-WATER (2.1) .1.2.13
ice storage (2.1B) .5.4.7
minimum input (2.1) .1.1.20
symbol table (2.1A) .2.1.21

SYSTEMS
ABORT command (2.1A) .2.1.22
BEP S (hourly report variable) (2.1C) .6.4.2
bypass system (2.1C) .6.1.3
COOL-CONTROL (2.1) .1.2.13
cooling/heating, LOADs to PLANT (2.1B) .4.1.5
DDS system (2.1A) .3.1.13
dual systems (2.1B) .3.4.7
EQUIPMENT KW (2.1) .1.1.19
fan coil units (2.1B) .5.4.6
heating/cooling unit ventilation (2.1B) .4.2.6
kitchen exhaust (2.1B) .4.2.5
MIN CFM RATIO (2.1) .1.1.19
PTAC (2.1) .1.2.13
radiant panel heating/cooling (2.1B) .4.2.5
residential ground water heatpump (2.1A) .3.2.6
RETURN CFM (2.1) .1.2.13
sizing/behavior of systems (2.1A) .2.1.22-23
specifying occupancy (2.1C) .6.4.2
startup controls (2.1B) .3.4.7
steam radiation, with vent (2.1B) .4.2.5
steam radiation, without vent (2.1B) .4.2.5
symbol table (2.1A) .2.1.21
SYSTEM-FANS (2.1) .1.2.13
SYSTEMS, Sizing Option in (2.1A) .2.3.3
thermostat (2.1) .1.2.14
VVT systems (2.1C) .9.1.2
Warmup cycle (2.1C) .8.3.5

VALIDATION
Validating DOE-2: Collins Bldg (2.1C) .8.3.2-4
DOE-2 vs BLAST Comparison (2.1A) .3.3.1-3
DOE-2 vs CERL Data: VAV and Reheat (2.1A) .3.2.3

WEATHER
Data for DOE-2 (2.1C) .7.4.9-14
Nonstandard Weather Data (2.1C,D) .10.2.2-6
Processor Update (2.1C) .7.3.8-10
Tapes (2.1) .1.1.17
Weather Utility Program (2.1C) .7.3.10-12

- Five-Day Intensive Seminar -
For Beginning and Advanced DOE-2 Users
- A series of unique, five-day hands-on
training sessions will be presented
March 19-23 on the campus of Arizona
State University in Tempe. The classes,
presented by Energy Simulation
Specialists, Inc., the Arizona Energy
Office, and Arizona State University,
are unique in that there will be separate
sessions for beginning and advanced
users, plus a special one-day overview for
managers. All instruction will be given by
expert DOE-2 users with years of specialized
real-world simulation experience.
All sessions will focus on DOE-2.1D.

- Training materials are included in the
cost of registration. Also, available
will be a 10% discount on the purchase
of MICRO-DOE2®. Cost of the seminar
varies, depending on sessions attended.
For complete information contact:

Energy Simulation Specialists, Inc.
64 East Broadway, Suite 230
Tempe, AZ 85282-1355
Phone 1-800-347-3121
or
FAX (602) 921-0892

- Career Opportunity -
Engineer or architect wanted for energy
use simulations using DOE-2. Projects
are industrial facilities, offices,
schools. Multidisciplinary firm with
research (air infiltration, thermal
mass), engineering (HVAC design), and
architecture (residential and hotels).
Loose structure, growth opportunity.

Steven Winter Associates, Inc.,
Attn: Adrian Tuluka
Norwalk, CT 06854
Phone (203) 852-0110
DOE-2 DIRECTORY

Program Related Software and Services

VIDEO

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE-2 Instructional Video and Manual</td>
<td>Joint Center for Energy Management University of Colorado at Boulder</td>
<td>Phone: (303) 368-9225</td>
</tr>
<tr>
<td>DOE-2 Instructional Video</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOFTWARE

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE-2.1D for Micros (MICRO-DOE2)</td>
<td>Acrosoft International 97-45 East Hampden Avenue Denver, CO 80231</td>
<td>Phone: (303) 368-9225</td>
</tr>
<tr>
<td>DOE-2.1D for Micros (ADM-DOE2)</td>
<td>ADM Associates, Inc. 3299 Ramos Circle Sacramento, CA 95827</td>
<td>Phone: (916) 363-8383</td>
</tr>
</tbody>
</table>

UTILITY PROGRAMS

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphs from DOE-2</td>
<td>Ernie Jessup 4977 Canoga Avenue Woodland Hills, CA 91364</td>
<td>Phone: (818) 884-3997</td>
</tr>
</tbody>
</table>

CONSULTANTS (Cont.)

<table>
<thead>
<tr>
<th>Category</th>
<th>Consultant</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consulting Engineers</td>
<td>Craig Cattelino Burns & McDonnell Engineers 8055 E. Tufts Ave. -- #330 Denver, CO 80237</td>
<td>Phone: (303) 721-9292</td>
<td></td>
</tr>
<tr>
<td>Computer-Aided Mechanical Engineering</td>
<td>Mike Roberts Roberts Engineering Co. 11946 Pennsylvania Kansas City, MO 64145</td>
<td>Phone: (816) 942-8121</td>
<td></td>
</tr>
<tr>
<td>Large Facility Modeling</td>
<td>George F. Marton, P.E. 1129 Keith Avenue Berkeley, CA 94708</td>
<td>Phone: (415) 841-8083</td>
<td></td>
</tr>
<tr>
<td>Master Classes, Tutorials, Consulting</td>
<td>Bruce Birdsall “In Support of Energy Software” 166 Caldecott Lane, Suite 113 Oakland, CA 94618</td>
<td>Phone: (415) 841-2050</td>
<td></td>
</tr>
<tr>
<td>Classes and Consulting</td>
<td>Richard Kuo Knowledge Laboratory 362 Ripley Court Naperville, IL 60565</td>
<td>Phone: (312) 416-1696</td>
<td></td>
</tr>
<tr>
<td>Consulting and Training</td>
<td>Jeff Hirsch 2138 Morongo Camarillo, CA 93010</td>
<td>Phone: (805) 482-5515</td>
<td></td>
</tr>
</tbody>
</table>
DOE-2 PROGRAM DOCUMENTATION

National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22121

<table>
<thead>
<tr>
<th>Order No.</th>
<th>NTIS Order No.</th>
<th>Shipments Within The U.S.</th>
<th>Shipments Outside The U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE-830-48782</td>
<td>$2,490.00</td>
<td>$4,980.00</td>
<td></td>
</tr>
<tr>
<td>PB-852-11449</td>
<td>319.00</td>
<td>635.00</td>
<td></td>
</tr>
<tr>
<td>PB-901-43074</td>
<td>112.50</td>
<td>225.00</td>
<td></td>
</tr>
<tr>
<td>DE-830-04575</td>
<td>45.00</td>
<td>90.00</td>
<td></td>
</tr>
</tbody>
</table>

To Order by Separate Titles:

<table>
<thead>
<tr>
<th>Order No.</th>
<th>NTIS Order No.</th>
<th>Shipments Within The U.S.</th>
<th>Shipments Outside The U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE-890-17726</td>
<td></td>
<td>23.00</td>
<td>46.00</td>
</tr>
<tr>
<td>LBL-8889, Rev. 2</td>
<td>53.00</td>
<td>106.00</td>
<td></td>
</tr>
<tr>
<td>DE-890-17727</td>
<td>53.00</td>
<td>106.00</td>
<td></td>
</tr>
<tr>
<td>LBL-8706, Rev. 2</td>
<td>109.00</td>
<td>218.00</td>
<td></td>
</tr>
<tr>
<td>DE-890-17728</td>
<td>55.95</td>
<td>111.90</td>
<td></td>
</tr>
</tbody>
</table>

2.1C and 2.1D Source Code may be also be ordered from the National Energy Software Center in Argonne, IL. Phone Ms. Jan Carter at (708) 972-7250 for details.

For phone orders using Visa or Mastercard (703) 487-4650 —or— FAX (703) 321-8547

Overnight Express — 24-hr in-house processing — $22 surcharge per title
First Class Mail — 24-hr in-house processing — $12 surcharge per title

Weather Tapes

To order TMY or TRY tapes:
National Climatic Data Center
Federal Building
Asheville, North Carolina 28801
Phone: (704) 259-0682

To order CTZ tapes:
California Energy Commission
Attn: Bruce Maeda, MS-25
1516-9th Street
Sacramento, CA 95814-5512
Phone: (916) 636-8400

To order WYEC tapes:
ASHRAE
1791 Tullie Circle N.E.
Atlanta, GA 30329
Phone: (404) 636-8400

User News

To be put on the newsletter distribution list, to submit articles, corrections or updates to documentation, or for DOE-2 program questions, please call or write:

Kathy Ellington
Simulation Research Group
Bldg. 90, Room 3147
Lawrence Berkeley Laboratory
Berkeley, CA 94720
Phone: (510) 486-5711
FAX: (510) 486-5712
electronic mail: kathy@gunion@lbl.gov
This document was prepared as an account of work sponsored by the US Government. Neither the US Government nor any agency thereof, nor the Regents of the Univ of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial products, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US Government or any agency thereof, or the Regents of the Univ of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof, or the Regents of the Univ of California, and shall not be used for advertising or product endorsement purposes.

The DOE-2 USER NEWS

c/o National Energy Software Center
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, IL 60439
U.S.A.

TEXAS A&M UNIVERSITY
ATTN: JEFF HAGER
ENERGY SYSTEMS DIVISION
MECHANICAL ENGINEERING
COLLEGE STATION, TX 77843-5123

350/1-90 This work was supported by the Assistant Secretary, Conservation and Renewable Energy, Office of Buildings and Community Systems, Building Systems Division, United States Department of Energy; Contract DE-AC03-76SF00098. Lawrence Berkeley Laboratory is an equal opportunity employer.