THE DOE-2 USER NEWS

DOE-2: A COMPUTER PROGRAM FOR BUILDING ENERGY SIMULATION

PUB-439

Vol. 13, No. 4

Winter 1992

The Simulation Research Group
Energy and Environment Division
Lawrence Berkeley Laboratory
One Cyclotron Road
Berkeley, California 94720

Editor: Kathy Ellington
Bldg. 90 — Room 3147

Table of Contents

Hands On (items of interest) 1
Energy Analysis of the Texas State Capitol Restoration 2
PRC-DOE2 11
Index to the User News (Vol. 1, No. 1 — Vol. 13, No. 4) 12
DOE-2 Directory 16

HANDS ON

Need DOE-2 Help!? Call Bruce Birdsall is available to answer user questions. You may call him Monday through Friday, from 10:00 a.m. to 3:00 p.m. (PST), at 510-829-8459. This service is supported by the Simulation Research Group.

Mar 24-29, 1993 — Sixth National Demand-Side Management Conference
to be held in Miami Beach, FL.
Contact: Patrice Ignelski, Sixth National Demand-Side Management Conference, 1320 Solano Avenue #203, Albany, CA 95706.

May 3-4, 1993 — Institutional Energy Conservation Programs: Prudent Management
to be held at the University of Minnesota, Twin Cities Campus.
Contact: David Grimrud, Minnesota Building Research Center, 330 Wulling Hall, 88 Pleasant Street S.E., Univ. of Minnesota, Minneapolis, MN 55455 — Ph: (612) 626-7419.

Jun 1-5, 1993 — ECEEE Summer Study 1993: Energy Efficiency Challenge for Europe
to be held in Runstedgard, Denmark.

Jun 21-25, 1993 — Innovative Housing
A world conference on advanced housing for energy efficiency and environmental responsibility; to be held in Vancouver, B.C., Canada.
Contact: Darinka Tolot, Conference Coordinator, CANMET, 580 Booth Street, 7th Floor, Ottawa, Ontario K1A 0E6, Canada Ph: (613) 943-2259, Fx: 996-9416.

ENERGY ANALYSIS OF THE TEXAS CAPITOL RESTORATION

B. D. Huns, Ph.D.
Head, Building Energy Systems Program
Center for Energy Studies
The University of Texas at Austin

J. A. Banks
Research Associate
Center for Energy Studies
The University of Texas at Austin

S. N. Reddy
Graduate Research Assistant
Center for Energy Studies
The University of Texas at Austin

ABSTRACT
This paper presents the methodology and results of a detailed energy analysis of the Texas Capitol Restoration. The purpose of this analysis was twofold: 1) to determine the projected energy cost savings of a series of design alternatives for the Capitol Restoration, and 2) to calibrate the simulation model of the Capitol in its restored condition (in September 1991) using monitored energy use data from the Texas LoanSTAR program.

The Capitol in its proposed restored condition was simulated using the DOE-2 building energy analysis computer program with long-term Austin weather data to project the annual energy use, peak electric demand, and annual energy cost. Then a series of 13 energy efficient design alternatives was simulated. The results were compared to those of the base case to determine the projected annual energy and energy cost savings for each measure, and for combinations of several of the measures.

Finally, the paper documents the calibration of the DOE-2 model for the Capitol in its restored condition, using monitored hourly whole-building electric data (excluding heating and cooling energy).

INTRODUCTION
In October 1991 construction began on the restoration of the Texas State Capitol to its original 1888 condition. The restoration is being coordinated with the construction of the underground Capitol Extension building that is being built adjacent to the Capitol to its north. Because of its historic nature the Capitol is exempt from the Texas Energy Conservation Design Standard for New State Buildings (4). However, it was the desire of the State Preservation Board and the Governor's Energy Office to incorporate as many energy efficient features as were feasible.

Thus, the Center for Energy Studies at The University of Texas at Austin was contracted to conduct a detailed energy analysis of the Capitol Restoration design so as to determine the projected energy cost savings and payback periods of a proposed series of 13 design alternatives and several combinations of these alternatives. The payback periods were then used in retrofit funding decisions for the LoanSTAR program. We used the DOE-2.1D building energy analysis computer program (IBM PC version) to simulate the building (5). Because of the complex building configuration and its diverse functional use pattern, the energy analysis challenged the limits of the building energy simulation program.

A secondary objective of the study was to calibrate the simulation model of the Capitol in its restored condition using monitored energy use data from the Texas LoanSTAR program (6). A lack of reliable measured heating and cooling data limited the calibration to non-plant electric energy. The results of the calibration were not used in the restored Capitol analysis.

This paper describes the DOE-2 input data gathering process for the Capitol and the assumptions made in the model. Simulation results, using long-term average Test Meteorological Year (TMY) weather data, are presented for the Capitol Restoration design originally proposed by the contract architects and engineers. These results are presented in terms of annual energy use (gas and electricity), peak electric demand, and estimated annual energy cost. Then energy cost savings results are presented for a series of energy efficient design alternatives, including envelope, lighting, and HVAC system measures, as compared to the original design base case. Finally, we document the calibration of the DOE-2 model using monitored hourly whole-building electric data for the Capitol in its restored condition. A detailed discussion of the analysis and results is presented in Reference 3.

BASE CASE DESIGN MODEL FOR THE RESTORED CAPITOL

Occupancy Assumptions and Zoning Configuration
The Legislature was assumed to be in session for the full year, with no recesses. The building is accessible 24 hours a day with public spaces fully lighted and open at all times, but with offices closed, except for cleaning staff, from 10 PM to 8 AM. Occupancy of the Senate and House chambers and hearing rooms follows typical in-session patterns for sessions, hearings, and tours.

The restored Capitol, which consists of 318,095 gross usable square feet of floor area (all of which are conditioned), was divided into 23 thermal zones for the DOE-2 analysis. The approach adopted was to aggregate similar areas vertically so as to minimize the number of zones to be considered. This aggregation took into consideration orientation (solar differentiation), occupancy and use patterns, and exterior wall geometry. Figure 1 shows the zoning adopted; see Reference 3 for a detailed description.

Figure 1. Zoning Configuration for Capitol Restoration Model
Walls and Roof

Although the Capitol involves an elaborate exterior, simplifications were required for a workable computer model. In several places walls were moved outward to be flush with the entrances, giving a simpler rectangular form, and porches and entrance setbacks were eliminated. Care was taken to keep the exterior wall area and enclosed floor area constant. Although self-shading of the building in the setbacks and noches was lost in the simplified outline, self-shading of exterior walls was maintained. A comparison of the simplified outline with a more detailed model showed a difference of only 1% in overall heating and cooling loads. Shading from exterior plasters, columns, wall officers, and cornices is also neglected, but shading from large nearby trees is not. The curved upper mitah and dome were represented by a rectangular solid with equal surface area. The attic spaces were simplified into rectangular shapes with flat roofs, with the height of the side walls set to give equivalent volume.

Wall construction is of unsurfaced limestone, with thickness varying from 2 ft at the top to 6 ft at the bottom. A granite facade covers most of the exterior area. The composite wall is modeled as a 4-ft thick masonry wall, the maximum thickness allowed for the DOE-2 weighting factors. Roof construction is unsurfaced wood, with built-up roofing; the attic skylights are 3/8-in. textured glass in metal frames.

Windows

All windows are single-glazed with wood frames, modeled with a U-value of 0.98 Btu/ft²·°F and a shading coefficient of 0.82 for 1/6-inch glass. A full window system in the model is reduced by representing groups of similar windows by a single window located at the center of the group; a multiplier command increases the effective window area to that of the group, while maintaining essentially equivalent shading effects. Ground floor windows, which are partly below grade, have the top one-third of their area exposed to solar irradiation, with the remainder lighted at the same rate. This lower window section is assumed to receive no solar irradiation, but is exposed to outside temperatures.

Schedules

Schedules for occupancy, lighting, and equipment use, and for HVAC system operation, are assumed to follow daily, in-session patterns in the pre-restored Capitol. For most schedules, the day is divided into two workdays from 8 AM to 6 PM, an extended workday from 6 PM to 10 PM, and night from 10 PM to 8 AM. Typical occupancy and equipment schedules for offices (the majority of the floor space) are 100% design values during peak occupied hours, and 2% during unoccupied hours. Similarly, the office lighting schedule is essentially 100% during peak occupied hours and 50% during unoccupied hours. Six basic schedules are used: public, night/emergency, office, Senate chamber, House chamber, and conference or hearing rooms. Other schedules apply to the library, the Speaker's apartment, the kitchen, storage areas, and attics. The night/emergency access areas are lit at all times, as are the public areas.

Electrical Loads

Lighting: Lighting loads are calculated from a count of installed fixtures and their wattages as shown in the electrical drawings and specifications. Installed wattages in office and conference/hearing areas are reduced by 10% to account for rooms with the lights turned off; the lighting schedule is applied to this value. The overall lighting schedule for a zone is a weighted composite calculated by multiplying the hourly schedule factor for each use by the proposed area of wastage associated with that use, and summing over all use types.

On the basis of these calculations, the average diversified lighting load in the offices spaces and adjacent corridors is about 2.0 W/ft², and in the library about 2.9 W/ft². Diversified lighting is higher in the Senate and House Chambers: 3.0 and 3.5 W/ft², respectively.

Equipment: The equipment electrical load in offices and hearing and conference rooms assumes a base plug load of 0.5 W/ft², which includes office makers, task lighting, answering machines, and other general office equipment. In addition, a computer is assumed to be on every desk, with one desk per 100 ft² in staff offices and one desk per office for legislators and aides. A power of 150 W is used as a typical computer electrical load, averaged over its operating cycle, which is roughly equivalent to an IBM XT or AT (6, 9). This amount is reduced by 10%, to account for diversity. Copy center equipment is an additional electrical load on the ground floor. When these loads are aggregated, the typical installed (diversified) load for the offices and adjacent circulation space is 0.8 to 1.0 W/ft².

In the library the diversified equipment load is 0.7 W/ft², which includes computers, copiers, microfilm readers, and other equipment. The Senate chamber equipment load is 0.1 W/ft², whereas the House chamber load is 0.2 W/ft² to account for the additional power used by the TV monitors at each desk and the electronic voting system.

Heat Gain from Occupants and Hot Water Use

The cooling loads generated by the building occupants are based on information in the ASHRAE Handbook of Fundamentals (1). In addition, the Texas Building Energy Conservation Design Standard (4) provides guidelines for hot water use. The number of people used for these calculations is based on a seat count in the Senate and House chambers and their galleries, and on an allowance of 1.5 W/ft²/person in hearing and conference rooms, 100 ft²/ person in office areas, and 200 ft²/person in circulation areas.

Infiltration

A major source of infiltration is the four sets of entrance doors on the first floor, which are large, tend to open and close slowly, and have no inner vestibule doors to reduce air leaks. Based on discussions with operating personnel, the infiltration rate for each set of doors is estimated at 2,000 CFM in winter and 1,000 CFM in summer. Infiltration is estimated at 0.1 air change per hour (ACH) in the exterior zones, even with the building pressurized.

Special Areas

The model for the first-floor kitchen assumes high use for lunch and dinner every weekday; equipment is commercial grade with relatively high power demands and modest latent loads. Included are appliances such as refrigerators, freezers, ranges, and dishwashers. Diversity factors, schedule, and base equipment load for the Speaker's apartment were chosen to reflect residential patterns.

HVAC Systems

Although many zones have a mix of HVAC equipment types, this cannot be modeled with DOE-2. Therefore, each zone is treated as having one system type, with either fan-coil, single-zone, or multizone units according to the predominant type of equipment used in the zone. The ground and first floor offices and the library are modeled as fan-coil systems with outside air supplied by single-zone air-handling units (AHUs) through ductwork and ceiling diffusers; the first-floor corridors, the kitchen, and the tunnel to the Capitol Extension use single-zone systems; and the second through fourth floors, the central core, and the south wing use multizone systems. The fourth- and fifth-floor attics have unit heaters to prevent freezing temperatures, while the upper part of the rotunda is treated as an unconditioned zone.

To control humidity, the fan-coil and multizone areas have associated systems that precondition outside air and deliver it to the occupied spaces at neutral conditions of temperature and humidity. Because DOE-2 does not allow more than one system to serve a zone, the preconditioning systems are modeled separately, and connected to dummy zones, one set for all fan-coil systems and one set for all multizone systems. Thus, the
preconditioning systems meet the outside air loads, while the main systems meet only internal and infiltration loads. As designed, the preconditioning systems use mixing of conditioned outside air with return air to achieve effective reheat, with a coil bypass and damper system controlling the temperature of the outside air. These systems are modeled as reheat fan systems, which is the only DOE-2 system type that can deliver air at the desired temperature. The reheat system uses a variable-temperature (55°F to 75°F) cooling coil, which is disabled at outdoor temperatures below 60°F, when dehumidification is not needed.

Total supply, outside air, and exhaust airflows for each zone are taken from the diffuser specifications shown on the mechanical floor plan, outside airflows range from 15% to 30% of supply airflows. The fan power and airflow rates for the air handlers are taken from the mechanical equipment schedules, with the values for the multizone AHUs divided proportionately among the zones served. The electrical power used by the fans for each zone is specified on a kW/CFM basis, averaged over all units serving the zone.

Plant Specifications

Based on discussions with the State Purchasing and General Services Commission (SPGSC), a chiller efficiency of 0.65 kW/ton and a steam boiler efficiency of 75% were assumed for the central plant.

CAPITOL RESTORATION ENERGY EFFICIENCY DESIGN ALTERNATIVES

The set of design alternatives that was analyzed is described below:

1. **Additional Window Shutters.** Add interior wood shutters to 21,245 ft² of window that are not included in the preconditioned condition. These are modeled by changing the shading coefficient from 0.82 to 0.65 and the U-value from 0.98 to 0.59 Btu/h·ft²·°F. These values assume that 75% of these shutters are closed at any given time. U-values and shading coefficients are obtained from ASHRAE (1) and Pletzer et al. (7) for louvered wood shutters behind 1/4-in. glass in wood frames.

2. **Cupola Ventilation Fans.** Four 2,800 CFM exhaust fans are placed in each of the fourth floor attic spaces. These fans operate to cool the attics by drawing in outside air when the temperature in the attic rises above 80°F and the ambient temperature is at least 4°F cooler.

3. **Diaphragm at Oculus.** Add a circular glass diaphragm at the oculus at the top of the interior dome to control venting through the dome. This is modeled by eliminating general infiltration in the perimeter zones on all floors; local infiltration at the four exterior doors on the first floor is maintained.

4. **Skylight Interior Shade.** Add a reflective-coated fabric shade beneath the skylights in the fourth and fifth floor attics to inhibit summer solar heat gain. The shading coefficient of the skylights is reduced from 0.86 to 0.30, and the U-value is reduced from 1.23 to 1.00 Btu/h·ft²·°F. These values are taken from ASHRAE (1) for a high-reflection, medium weave fabric behind 1/4-in. clear glass in a metal frame with no thermal break. This alternative was run with the shade in place all year, and with the shade used only during the summer months.

5. **High-Efficiency Lamps and Ballasts.** Substitute high-efficiency lamps and electronic ballasts in all fluorescent and metal halide fixtures. This change is modeled by a reduction in lighting wattage for five fixture types: 2.5% in the metal halide fixtures, 22% in the 1- and 2-tube fluorescent fixtures, 20% in the 3-tube 2-ft fluorescent, and 16% in the 3-tube 8-ft fluorescent (luminous ceiling). This results in a reduction in installed lighting wattage of approximately 15% in ground floor and attic zones and 2% elsewhere (See Reference 3 for more detail).

6. **Lighting Control Package.** This includes the addition of 4-step dimmers on the lights above the luminous ceiling in the House chamber, and the installation of occupancy sensors in the ground floor offices and all heating, conference, and restrooms.

The occupancy sensors are assumed to save 25% of the occupied period lighting energy use in the offices, and 40% of the occupied period lighting energy use in the hearing and conference rooms and in the restrooms (2).

7. **Unconditioned Corridors.** Delete the systems supplying air to the east- and west-wing corridors on the first floor, excluding areas adjacent to the exterior doors. This approach will rely on infiltration and return leakage from adjacent zones, as well as conduction through the walls of adjacent offices, for ventilation and temperature control.

8. **Direct Digital Controls.** These permit reset of the hot and cold deck temperatures in the multizone systems to accommodate the zones with the greatest heating and cooling loads at a given hour. The base case reset from 10°F to 85°F is deleted, but the summer shutdown of the heating coils is retained; the fixed cold deck temperature of 55°F used in the base case is deleted.

9. **Thermal Offsets.** In this strategy the heating thermostat is set back from 72°F to 67°F and the cooling thermostat is set up from 75°F to 85°F during unoccupied hours for all conditioned zones. The multizone system heating/cooling coils are disabled, as necessary, to prevent forced temperature offsets.

10. **Two-Speed Fan Operation with Outside Air Shutdown.** Speed controls are added to the fan motors of the single- and multizone AHUs to reduce airflow during unoccupied hours (10 PM to 7 AM). During this time the fan-coil units are on night-cycle controls and the outside-air dampers are closed, except as necessary to balance exhaust airflows. During the day, the fans supply full design airflow, while at night they operate at either 50% or 75% of design flow. This control scheme is also used for the outside-air preconditioning systems, as is detailed in Reference 3.

11. **Variable Air Volume Fans.** Speed controls on the fan motors of the single- and multizone AHUs are set to provide continuously variable supply airflow, at an average energy use of approximately 0.6 W/CFM. The thermostat set the volume to match the heating or cooling demand in the zones. As with two-speed operation, this alternative was run with both 50% and 75% minimum airflows, with the ratio of outside air to supply air maintained constant.

Variable-volume operation is also applied to the outside-air preconditioning system for the multizone systems.

12. **High-Efficiency Motors.** High-efficiency motors are substituted for all supply and exhaust fans and for the elevator drives. The standard motors are assumed to meet minimally the Texas Energy Conservation Design Standard (Table 5-1 in Reference 4; the high-efficiency motors are as detailed in the specifications for the Capitol Extension (2), differentiated by motor size.

13. **Increased AT Cooling Coil Design.** In all HVAC systems a sub-cooling coil designed for 16°F rather than the normal 10°F chilled water temperature difference in the AHUs, and 12°F rather than 10°F in the fan-coil units. This permits reduced chilled-water flow rates through the coils and results in reduced pumping power. In addition, chilled water is supplied to the cooling coils at 44°F, but returns at 58°F rather than 54°F, improving the central chiller efficiency from 0.65 to 0.81 kW/ton.
Combination Alternatives

Alternatives 14-17 represent various combinations of HVAC system control options, as identified in Table 1. The final composite of all alternatives selected for implementation includes the following:

- Additional window shutters (Alternative 1)
- High-efficiency lamps and ballasts (Alternative 5)
- Lighting control package (Alternative 6)
- Direct digital controls (Alternative 8)
- Thermostat offsets (Alternative 9)
- Night-cycle operation with outside air shutdown (part of Alternative 10)
- Variable-volume fans (Alternative 11)
- High-efficiency motors (Alternative 12)
- Increased ΔT cooling coil design (Alternative 13)

TABLE 1

Energy Use and Cost Summary

<table>
<thead>
<tr>
<th>Texas Capitol Restoration Design Alternatives</th>
<th>MBTU ELECTRIC</th>
<th>PEAK KW</th>
<th>MBTU GAS</th>
<th>YEARLY EXPENSE ($)</th>
<th>YEARLY SAVINGS (COST) ($)</th>
<th>PERCENT SAVINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASE CASE</td>
<td>35,123</td>
<td>2,182</td>
<td>44,168</td>
<td>515,200 157,200 669,500</td>
<td>- 0 1,000</td>
<td>20.0</td>
</tr>
<tr>
<td>ALTERNATIVE 1 SHUTTERS</td>
<td>35,180</td>
<td>2,175</td>
<td>43,920</td>
<td>512,200 155,400 668,500</td>
<td>200 0 1,000</td>
<td>20.0</td>
</tr>
<tr>
<td>ALTERNATIVE 2</td>
<td>35,742</td>
<td>2,173</td>
<td>43,873</td>
<td>510,600 154,200 667,500</td>
<td>1,000 0 1,000</td>
<td>20.0</td>
</tr>
<tr>
<td>ALTERNATIVE 4 SKYLIGHT SHADE</td>
<td>35,715</td>
<td>2,161</td>
<td>44,416</td>
<td>510,500 158,100 669,500</td>
<td>1,000 (900) 0 9.0</td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVE 5</td>
<td>35,746</td>
<td>2,172</td>
<td>44,189</td>
<td>510,900 157,300 668,500</td>
<td>1,600 (1,000) 0 1,000</td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVE 6 W/LAPES & BALLASTS</td>
<td>35,389</td>
<td>2,141</td>
<td>44,241</td>
<td>504,800 157,300 662,500</td>
<td>7,500 (5,000) 0 7.0</td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVE 7 LIGHTING CONTROLS</td>
<td>35,323</td>
<td>2,137</td>
<td>44,358</td>
<td>505,500 157,600 663,500</td>
<td>7,000 (4,000) 0 6.6</td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVE 8 CORR. UNCONDITIONED</td>
<td>35,737</td>
<td>2,178</td>
<td>44,400</td>
<td>513,000 157,100 665,500</td>
<td>1,000 (1,000) 0 1,000</td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVE 10 DDC HIGH VOLUME DECKS</td>
<td>36,424</td>
<td>2,170</td>
<td>20,382</td>
<td>467,500 72,500 539,500</td>
<td>45,000 0 8.6 129,500</td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVE 11 M/L/V T/MOT & ST/F/TT OFF</td>
<td>36,955</td>
<td>2,224</td>
<td>31,921</td>
<td>501,500 113,500 618,500</td>
<td>10,900 0 18.3 54,700</td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVE 12 2-SPEED OPERATION</td>
<td>35,693</td>
<td>2,185</td>
<td>35,493</td>
<td>470,100 126,100 596,200</td>
<td>41,700 0 11.0 72,700</td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVE 13 VARIABLE VOLUME</td>
<td>35,352</td>
<td>2,185</td>
<td>37,413</td>
<td>480,400 133,200 613,500</td>
<td>31,900 0 12.0 55,900</td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVE 14 DDC, T/MOT & ST/F/TT OFF</td>
<td>35,353</td>
<td>2,185</td>
<td>38,530</td>
<td>395,200 107,100 502,300</td>
<td>112,800 0 22.5 167,500</td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVE 15 T/MOT & VOLUM., VOLUME</td>
<td>35,351</td>
<td>2,185</td>
<td>37,090</td>
<td>440,000 132,000 581,400</td>
<td>66,200 0 14.0 142,500</td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVE 16 DDC OFF</td>
<td>35,960</td>
<td>2,146</td>
<td>44,168</td>
<td>500,500 157,200 657,500</td>
<td>11,800 0 2.1 11,500</td>
<td></td>
</tr>
<tr>
<td>ALTERNATIVE 17 M/L/V M/L/V T/MOT & ST/F/TT</td>
<td>35,853</td>
<td>2,123</td>
<td>44,168</td>
<td>499,100 157,200 656,300</td>
<td>13,200 0 2.4 13,200</td>
<td></td>
</tr>
</tbody>
</table>

Texas Capitol Restoration Design Alternative Combinations

- Lighting control package (Alternative 6)
- Direct digital controls (Alternative 8)
- Thermostat offsets (Alternative 9)
- Night-cycle operation with outside air shutdown (part of Alternative 10)
- Variable-volume fans (Alternative 11)
- High-efficiency motors (Alternative 12)
- Increased ΔT cooling coil design (Alternative 13)

Doe-2 User News, Vol.13, No.4

-5-

Doe-2 User News, Vol.13, No.4
ENERGY ANALYSIS OF BASE CASE AND ALTERNATIVES

A summary of annual energy use and projected energy cost savings for the DOE-2 simulations, using long-term (TMY) weather data for Austin, are presented in Table 1. Results for the base case and for each alternative and combination of alternatives are given. However, Alternative 2 (Attic Ventilation Fans) is omitted because, as is discussed below, it results in zero energy savings.

Summary statistics for the base case are given in Table 2. The peak electric demand is seen to be 2,182 kW (6,86 W/f2), and the annual energy intensity is 261 kWh/f2-yr. Assuming utility rates of $0.045/kWh and $3.56/MMBtu as applicable to the Capitol Complex for 1991, this gives an annual energy cost of $669,500 or $2,101f2-yr. Because this electrical rate does not explicitly include demand charges, the reduction in peak load will give additional savings.

Evaluation of Design Alternatives

Building Envelope Alternatives

Additional Window Shutters. The overall effect of the additional window shutters is minimal, with savings of about 0.1% ($1,000/yr) of base-case energy expenses. Because of the dark color of the shutters and placement inside the glass, there is little reduction in solar gain. Although the shutters provide additional insulation, this effect is minimal.

Attic Ventilation Fans. Because of the strong thermal coupling between the attics and the chambers below, the condition of attic temperatures above 80°F with the outdoor temperature at least 4°F lower never occurs, so energy savings are zero. When attic temperatures are high, the outside temperature is even higher.

Dome Sun-Shading. The diaphragm at the dome oculus reduces infiltration, but shows minimal effect and cost savings. However, these simulation results are uncertain because information about infiltration in the building is at best an estimate.

Skylight Shades. The shades on the attic skylights also produce little savings (up to $1,300/yr). With full-year deployment, almost half of the savings in summer cooling load are offset by the loss of beneficial passive solar heating of the attics in winter. Savings are greater with the shade deployed in the summer only, but this will be offset by the additional costs of seasonal deployment and removal.

INTERNAL LOADS ALTERNATIVES

High-Efficiency Lamps and Ballasts. This measure does not greatly reduce the overall energy use because only fluorescents, found in ground-floor offices, restrooms, mechanical rooms, and attic luminous ceiling backlights, are affected. However, there is a 40 kW reduction in peak electrical demand.

Lighting Control Package. The lighting control package similarly has a small effect overall because it is applied to only a small fraction of the lights, but has a significant effect in the zones where it affects a majority of the lighting. Again, the reduction in peak demand of approximately 33 kW is significant.

Systems Control Alternatives

Changes in the operation of the HVAC systems provide the greatest opportunity for energy efficiency and cost savings.

Unconditioned Corridors. Although this alternative provides little energy savings, the elimination of the corridor HVAC systems will save on construction costs. Because the corridors are buffered by surrounding zones, DOE-2 indicates that the temperature will be maintained in the 75-79°F range throughout the year. Actual temperatures will match the surrounding zones more closely because of conditioned return-air leakage from offices and infiltration from the entrance lobbies.

Direct Digital Controls. The use of DDC in the multizone systems is highly effective, indicating energy savings of nearly $130,000/yr. Multizone systems with fixed deck temperatures are inherently inefficient, especially under low load conditions, because both the heating and cooling coils operate at all times. However, with DDC the cold deck temperature is set to meet the cooling needs of the warmest zone, and the hot deck is set to meet the heating needs of the coolest zone. This alternative results in a projected reduction of 9% in electrical energy and more than 50% in natural gas energy.

Thermostat Offsets. Thermostat offsets reduce energy use when the building is essentially unoccupied. The reduction is mostly in heating energy, with approximately 27% less gas used than in the base case. Electrical energy reduction is only 2%, with a 40 kW increase in peak electric demand; energy cost savings of nearly $55,000/yr are about half of those obtained for the DDC option. The peak electric demand increase results from zone temperature setbacks.

Two-Speed Fan Operation with Outside Air Shutdown. This measure, which includes night-cycle operation of the fan-coil units, substantially reduces energy use during unoccupied hours through the reduction in supply and outside airflow.

Table 2: Simulated Annual Energy Use and Energy Cost for Prerestored and Restored Capitol

<table>
<thead>
<tr>
<th>Restoration Case</th>
<th>Peak Electric Demand (kW)</th>
<th>Peak Demand Intensity (W/f²)</th>
<th>Electricity Use (kW-h)</th>
<th>Gas Use (MBtu)</th>
<th>Energy Use (kBtu/yr)</th>
<th>Energy Intensity (kBtu/f²-yr)</th>
<th>Electricity Cost ($)</th>
<th>Gas Cost ($)</th>
<th>Total Energy Cost ($)</th>
<th>Energy Cost Intensity ($) (kBTU/f²-yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Case</td>
<td>2182</td>
<td>6.86</td>
<td>11,383,548</td>
<td>44,168</td>
<td>83,628</td>
<td>261</td>
<td>512,380</td>
<td>157,300</td>
<td>649,680</td>
<td>2.10</td>
</tr>
<tr>
<td>Prerestored*</td>
<td>1652</td>
<td>5.36</td>
<td>11,855,790</td>
<td>61,591</td>
<td>99,335</td>
<td>316</td>
<td>497,680</td>
<td>113,200</td>
<td>716,880</td>
<td>2.14</td>
</tr>
<tr>
<td>Restoration with Composite of Energy Efficiency Alternatives</td>
<td></td>
</tr>
</tbody>
</table>

* Based on gross usable area of 31,095 ft² (exclusive to Capitol Extension included here but not in prerestored case)

* Based on calibrated model using long-term (TMY) weather data

* Based on base-case energy intensity of 31,095 ft²
Variable Air Volume AHUs. Using motor speed controls to provide continuously variable supply airflow gives the greatest projected energy savings of all the individual alternatives. The reduction is up to 20% in electrical use, up to 35% in gas use, and up to $167,000/yr in energy cost savings. In addition, there is up to a 100 kW reduction in peak electric demand. This control strategy allows the HVAC system to respond to heating and cooling demands, rather than constantly operating to meet peak loads.

System Equipment Alternatives

The high-efficiency motors result in 10% less electricity used by the fans, and 7% less energy used for elevators. Overall, the motors provide a 2% reduction in electrical consumption, while the coils give 3% savings. There is also a 35 kW reduction in peak electric demand with high-efficiency motors, and a 60 kW reduction with high ΔT coils. Energy cost savings are in the $12,000-13,000/yr range.

Combination Alternatives

The combination alternatives show the coupled effects of combined measures. Savings are similar to the individual alternatives, although in most cases they are not directly additive. The final composite of all selected energy efficiency options gives reductions of 20% in electrical energy use, more than 70% in natural gas use, 100 kW lower peak demand, and an overall cost saving of more than $236,000, or 39%.

Comparison of Base Case and Final Composite

Figures 2a and 2b compare the annual whole-building energy use and cost for the base case and final composite, broken down by energy end use category. For the base case, annual average plant heating energy use is 15.8 Btu/ft² and cooling energy use is 4.3 Btu/ft². These graphs show that the combined design alternatives have a major effect on space heating, a significant effect on space cooling and HVAC auxiliaries, but only a minor effect on lighting and elevator use and cost. Monthly patterns of electricity and natural gas use (not presented here) show less seasonal variation in natural gas use in the final composite than in the base case (3). Comparative summary statistics are given in Table 2: note that the final composite reduces peak demand to 1.881 kW (5.91 W/ft²), energy intensity to 124 kBtu/ft²-yr, and energy cost to $405,900 or $1.28/ft²-yr.

MODELING OF THE CAPITOL IN ITS PRERESTORED CONDITION

To calibrate our DOE-2 model of the Capitol, we modeled it in its prerestored condition, as it was operated during the January-September 1991 period, before the beginning of restoration construction. We modeled the building using the best available input data for the DOE-2 simulation. These data were taken from drawings and specifications, supplemented by extensive surveys of the building, coupled with maintenance personnel interviews. The results of this simulation were compared with the measured whole-building electric data, the only reliable data available, with a use of the considerable uncertainty in some of the input data, mainly the installed equipment loads and the lighting and equipment diversities and operating schedules, adjustments to these values were then made to calibrate the model to the measurements.

The Prerestored Capitol Model

The prerestored Capitol differs from the restored condition primarily in the ground floor office arrangement and in the occupancy and equipment densities throughout all office areas. In addition, the prerestored Capitol does not include the tunnel to the Capitol Extension, and so has a gross floor area of 314,095 ft², of which 254,560 ft² are conditioned. We relied on "as built" drawings, supplemented by extensive surveys of the building and interviews with building operating personnel, to define the DOE-2 model input. Described below are the changes made to the DOE-2 model of the restored Capitol; items not discussed here were treated identically in both the restored and prerestored models.

Zoning Configuration. In the prerestored condition, core zone, which is unconditioned, extends down to the first floor instead of the ground floor. The snack bar area and the electrical transformer vault form an additional zone on the ground floor. In addition, the tunnel to the Capitol Extension is deleted, the first floor corridors are unconditioned, and the first floor kitchen is incorporated into the west wing as office space. Mezzanine offices are added on the first through fourth floors.

Schedules. The schedules for occupancy, lighting, and equipment use, and for HVAC system operation, are essentially the same as for the restored Capitol. An addition is a schedule for the snack bar, and one for the external and dome flood lighting, which is based on the sunrise and sunset hours.

Electrical Loads. Because no accurate as-built drawings were available, lighting and equipment loads were established by identifying a set of representative spaces (based on occupancy density and use type), counting the number of fixtures and equipment items, and recording the wattage specified on each (3). Based on these surveys, power densities were calculated for each representative space. Then, with observations made during the
sample surveys, in combination with available floor plans, the ones were subdivided into representative spaces. Zonal composite lighting and equipment power densities were determined as floor-area-weighted averages of these spaces.

Lighting: Specifications for all corridor lighting, lighting in the central core and dome, the external lighting and dome flood lights, and the night/emergency lighting were obtained through consultations with the Capitol maintenance staff. A lighting diversity factor of 90%, based on observation during surveys, was included in the design values. Based on these procedures, installed lighting levels are 2.08 W/ft² for offices and adjacent circulation space, and 2.12 W/ft² for all conditioned spaces.

Equipment: Specifications for equipment with high power draws (for example, large copiers and printing equipment), were obtained from vendor information. Approximate equipment diversity factors, estimated from discussions with the building occupants and maintenance staff, were incorporated into the design values. Based on these procedures, and an estimated diversity of 80%, design equipment levels are 2.5 W/ft² in the office spaces, resulting from high-densities of computers, printers, FAX machines, and other office equipment; a detailed zonal breakdown of lighting and equipment loads is given in Reference 3. Equipment loads for the snack bar were based on the assumption that the two 12 kW supply mains were fully loaded during hours of peak operation. The electrical vault specifications assumed that transformer and switch gear losses were 5% of rated power.

Heat Gain from Occupants. We used the same procedures as were used for the restored Capitol to calculate heat gain from occupants in the pre-restored case, except that in the office spaces the people densities were obtained from seat counts, rather than from people per square foot values.

HVAC Systems. Each zone was treated as having only one system type: fan-coil, constant-volume reheat, or dual-duct, according to the predominant type of equipment used in the zone. The ground floor, first floor north wing and first floor west wing south offices were modeled as fan-coil units, with outside air supplied by single-zone air handling units through duct work and ceiling diffusers; the Senate chamber and second and third floor east wing offices are modeled as dual-duct, variable-air-volume systems with outside air preconditioning; and the remaining areas, including the library and House chamber, are modeled as constant-volume reheat systems. The first floor corridors, the atrium, and the lower and upper core zones are unconditioned.

The primary information sources for the air distribution systems were the incomplete "as built" drawings and records of revisions made to the mechanical systems, supplemented by discussions with the Capitol maintenance staff and combined with engineering judgement. Supply, outside air, and exhaust flows were taken from the diffuser specifications. Outside air flows ranged from 7 to 20% of supply airflows, with an average of 16%. Fan power, design air flow rates, and reheat coil temperatures were taken from the mechanical equipment schedules, with the values for multitone AHUs divided proportionally among the zones served.

Plant Specifications. On the basis of consultations with the SPGSC, the chiller efficiency was set at 0.71 kW/ton and the boiler efficiency at 65% for the period June - September 1991. The chilled water supply temperature was set at 42°F.

Simulation Results for the Pre-restored Capitol Model

DOE-2 was run using weather data measured at the Capitol Complex by the LoanSTAR monitoring program for the period June - September 1991. The results are presented in Figure 3, which shows the hourly whole-building electricity use, in kilowatts, plus the fan and outdoor lighting energy use components, for the third week of July, during which time the Legislature was in session. Note that this plot, which is based on appropriate hourly reports from DOE-2 to be comparable with the measured data, does not include heating or cooling plant energy; however, local fan and pump use is included. Thus, these results represent the behavior of an existing building as predicted by a carefully constructed model, but without the enlightenment of a comparison to measured data.

Note that peak weekday electricity use is 1460 kW, while at night the use drops to 470 kW. The effect of turning on and off the exterior lights, a 90 kW load, can be seen clearly. Although the weekday and weekend periods are clearly distinguished, Saturdays and Sundays were modeled identically.

Figure 3 Simulated whole-building electricity use (excluding heating and cooling plant energy) for pre-restored Capitol - third week of July 1991

Calibration of Simulation Model with Measured Electricity Data

Monitored hourly data for the Capitol were collected only for short periods during 1991. Because of construction on the Capitol Extension and instrumentation contractor problems, steam condensate pump meter data are available only for portions of January and February, chilled water energy data are available for about two weeks in April, and whole-building electric data are available for July-September. The whole-building electric measurements are the only reliable ones of the three sets.

Examination of the measured electricity use shows consistent daily and weekly patterns (Figure 4). Furthermore, Saturday patterns are distinct from Sunday patterns (Figure 4). The most interesting observation is that the September measured electricity use declines slightly from that of July and August, coinciding with the end of the legislative session (August 25) for that year.

Figure 4 Seasonal Pattern for July through September 1991
A remarkable feature of the measured data is that the reduction in building electricity use from the daytime peak to the nighttime and weekend valleys is only some 25%, rather than the approximately 75% shown in Figure 3 for the prereduced model; the peaks are lower, and the valleys are considerably higher than predicted. This indicates that the schedules for lighting and equipment (especially equipment) are lower than expected during the peak occupied period. Furthermore, lights and equipment are not being turned off at night and on weekends nearly as much as expected. Based on these results, a set of typical day types (weekday, Saturday/ holiday, and Sunday) was developed to represent the diurnally varying schedule for lights and equipment (Figure 5). These schedules were calculated by taking the ratio of hourly to peak electricity use at each hour for the four plus weeks of July.

Using the typical day schedules, and adjusting them to match the electricity use observed in the measured data for July, a calibrated DOE-2 model was run for the same three-month period of 1991, with the results shown in Figure 6. As expected, the simulated and measured electricity use results compare closely.

Finally, an annual simulation was run using the calibrated model for the prereduced Capitol with long-term (TMY) weather data for Austin. The results represent the expected annual energy use for the building, including all heating and cooling plant energy, with the assumption that the Legislature is in session throughout the year. Annual results are presented in Table 2, which shows that annual total energy intensity is 316 kBtu/ft²-yr, and peak electric demand is 1,652 kW (5.26 W/ft²). Using the 1991 utility rates used for the prereduced Capitol, this results in an annual energy cost of $716,800 or $2.28/kW-h. Hopefully, this high energy use will be reduced by the inclusion of the package of energy efficiency alternatives in the prereduced Capitol.

CONCLUSIONS
Based on this analysis of the Capitol, the following conclusions can be drawn.

1. a. Building envelope measures (such as additional window shutters, a diaphragm at the dome core, and a skylight shade) save minimal energy and energy cost, on the order of only a few thousand dollars per year. Lighting measures (high-efficiency lights and lighting controls) result in modest energy cost savings of $6,000 to $7,000 per year, and peak demand reductions of about 50 kW. System equipment measures (high-efficiency motors and high temperature difference cooling coils) show annual energy savings of $12,000 to $13,000 and peak demand reductions of up to 60 kW.

b. The most effective energy cost reduction measures are HVAC control measures, such as direct digital control of coil temperatures, thermostatic controls, and 2-speed vs. variable-air-volume fans with outside air control. These save up to $167,000 per year and reduce peak demand by up to 300 kW.

c. A composite of all selected energy efficiency measures is expected to save nearly $264,000 per year (a 35% savings), and result in a peak demand reduction of 300 kW (a 14% reduction).
2. When modeling a building that has highly unusual occupancy and use patterns, such as a state Capitol, uncertainties in lighting and equipment use can be considerable. Even when extensive survey data are available, the uncertainty in lighting and equipment operating schedules is sufficient to cause peak electricity load to be significantly over-predicted; similarly, nighttime electric power is likely to be substantially under-predicted if it is assumed that the vast majority of lights and equipment are turned off at night. It seems that occupants don't turn lights off, or cleaning crews turn them back on. Furthermore, office equipment such as computers, copiers, and FAX machines is likely left on overnight.

3. Measured whole-building electricity use for the Capitol during the summer legislative session of 1991 shows remarkably consistent daily and weekly energy use patterns. Thus, typical weekday, Saturday, and Sunday lighting and equipment schedules can be developed to calibrate successfully an hourly simulation model of the building.

4. Simulated annual energy use for the Capitol in its pre-restored condition is 316 kBtu/ft² yr. It is hoped that this high energy intensity will be reduced by the inclusion of the package of energy efficiency alternatives in the restored Capitol. Furthermore, more energy conscious behavior of the occupants in turning off lights and equipment when not in use, will also be necessary to reduce this energy intensity.

REFERENCES

Announcing PRC-DOE2
A PC Version of DOE-2.1D for $295

DOE-2 is a building energy simulation program that has become a standard tool for DSM and code compliance analysis. The DOE-2 program is flexible enough to model a simple house or a million square foot airport, detailed enough to allow the specification of up to 64 zones and 40 systems, and sophisticated enough to include daylighting, sunspaces, cogeneration, load control and even user-defined functions.

The Partnership for Resource Conservation (PRC) is offering the latest microcomputer version of DOE-2, including two weather files and weather conversion utilities, for $295. PRC also offers custom utility programs for creating multiple DOE-2 input files, analyzing DOE-2 output and creating monthly average and peak load shape curves. On-site training and program support are also available.

Cost of PRC-DOE2 and PRC-TOOLS, January 1993

<table>
<thead>
<tr>
<th>Service Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRC-DOE2 program only</td>
<td>$295</td>
</tr>
<tr>
<td>Custom DOE-2 tools for creating multiple runs, analyzing end-use demand and costs, and creating load shapes.</td>
<td>$195 - $695 (training or phone support recommended)</td>
</tr>
<tr>
<td>DOE-2 training and support</td>
<td>call for information</td>
</tr>
</tbody>
</table>

The DOE-2 program is compiled to run on an IBM compatible 386 or 486 computer with a math co-processor installed and at least 4 Megabytes of RAM. Purchase of PRC-DOE2 includes two weather data files of your choice (317 North American locations); additional weather files can be purchased for $25 each. Limited support is available for other versions of the DOE-2 program. We also provide support for specific DOE-2 projects and give training sessions in the use of PRC-DOE2 and custom utilities.

To order your DOE-2 package or for more information, contact:

Paul Reeves
The Partnership for Resource Conservation
140 South 34th Street
Boulder, CO 80303
Phone/Fax: (303) 499-8611
Index to the DOE-2 User News

Volume 1, No. 1 (August 1980) through Volume 13, No. 4 (Winter 1992)

KEY: The Index lists User News volumes, issues, and page numbers as follows: Name of Article, program version that was current when article appeared, then Volume, Number (No. 1 = Spring, No. 2 = Summer, No. 3 = Fall, No. 4 = Winter), and page number.

For example, the entry "Advanced Simulation (2.1C)...7:4,4-8" tells the reader that the article titled "Advanced Simulation", which appeared when DOE-2.1C was the current version of the program, will be found in User News Volume 7: Number 4, on pages 4 through 8.

ADVANCED SIMULATION
Advanced Simulation (2.1C)...7:4,4-8
DOE-2 and the Next Generation (2.1C)...6:4,1-2
IBPSA (2.1C)...8:2,4-7

BUGS
in DOE-2.1
About bugs...1:1,3
BDL...1:1-6; 1:2,6
LOADS...1:1,6
SYSTEMS...1:1,7; 1:2,7-8
PLANT...1:1,9-10; 1:2,8
Weather...1:2,6

in DOE-2.1A
All bugs...3:4,3-6
BDL...2:1,3-6; 2:2,9-10; 2:3,5;
3:1,9-10; 3:1,13; 3:3,3
LOADS...2:1,7; 2:3,5; 3:1,10
SYSTEMS...2:1,8-12; 2:2,10-11; 2:3,5;
3:1,10-12; 3:2,5; 3:3,3
PLANT...2:1,12-14; 2:3,5; 3:1,12
ECON...2:2,11
Weather...2:2,6

in DOE-2.1B
All bugs...5:4,3-6
BDL...4:4,5; 5:1,4
LOADS...4:4,5; 5:1,5
PLANT...4:4,6; 5:1,5
SYSTEMS...4:4,6; 5:1,5
Weather...4:4,6; 5:1,5

in DOE-2.1C
All bugs...9:3,4-16
BDL...7:1,9-33; 9:1,4; 9:2,2
ECON...7:1,9-33
LOADS...7:1,9-33; 7:2,13-14; 8:1,5; 8:4,5
PLANT...7:1,9-33; 8:4,5
Reports...7:1,9-33; 8:1,6
SYSTEMS...7:1,9-33; 8:4,4-5; 9:1,3-5
Weather...7:1,9-33; 8:2,3

in DOE-2.1D
BDL...11:1,5; 11:3,17,20
LOADS...11:3,11,17,19
PLANT...11:3,12
Reports...11:3,17,20
SYSTEMS...11:3,11-15; 21-23

DAYLIGHTING
Glazing Optimization Study (2.1A)...3:3,4-5
Daylighting Design Tool Survey...11:2,12-17; 12:3,19-24
Daylighting Network (2.1C)...5:1,1-2
Daylighting with Multiple Skylights (2.1D)...13:2,2-5
Modeling Complex Daylighting (2.1C)...11:1,16-15
SUPERLITE (2.1C)...8:2,1
Seeing Daylight in So. Calif. (2.1C)...3:3,1
Sunspace/Atrium Model in 2.1C...3:3,1-3

DOCUMENTATION
Basics Manual...12:3,28-29
Plant...12:4,10
System type: HP...11:1,21-22
System type: PIU...11:1,16-20
System type: PMZS...11:2,5-7
System type: PSZ...11:2,2-4
System type: PTAC...11:3,2-4
System type: PVAVS...11:2,8-10
System type: RESYS...11:2,8-10
System type: SZRH...10:4,2-5
System type: TPFC...11:3,5-7
System type: VAVS...11:1,23-25

BDL Summary...11:1,11-14; 12:9,12; 2:1,15; 4:4,3;
5:4,4; 9:4,3-3; 11:3,27; 12:1,21-24; 12:2,51

Reference Manual...11:1,11-14; 2:1,16-20
4:1,4; 4:4,3; 5:1,3; 5:4,7
Sample Run Book...1:1,11-14; 8:3,5; 9:4,2-3
Supplement...4:4,3; 5:1,3; 6:4,4; 11:4,2-3; 12:3,1,31,
13:3,16

Users Guide...11:1,11-14; 2:1,15

DOE-2 (program-general topics)
Analyze DOE-2 Outputs Quickly (2.1C)...10:2,7-12
ASHRAE/IES Standard 90 (2.1C)...6:1,3
CEC/DOE California Compliance Tool...12:4,1,12-14

COMPLY24 (California Compliance Tool)...12:2,2-6
Cooling Towers, Hot Tips for...13:3,2-3
Discovering the Unexpected w/DOE-2 (2.1C)...7:1,3-6

DOE-2 and CCIP (2.1E)...12:3,16-18
DOE-2 and Research at LBL (2.1A)...3:2,1-8
DOE-Plus Pre- and Post-Processor (2.1D)...11:4,4-13
DOE-SCAN Output Interpreter (2.1D)...12:4,2-3

Electric Ideas Clearinghouse...11:3,1
Energy Analysis of the Texas State Capitol Restoration...13:3,2-3

DOE-2 User News, Vol.13, No.4 -12-
DOE–2 (program-specific topics)

Alphabetical cross index of commands and
keywords (2.1D), 1.2,4-6

Atrium Buildings, How to Model (2.1C), 7-3,2-7

BDL fix: "symbol table full" [all] 9-2,2; 11,1,5

COMBINE (2.1D), 11,2,1

Cooling Systems, How to Size (2.1C), 10,1-2,8

Custom Weighting Factors (CWf)

Automatic CWf (2.1A), 2,2,2-3

Input Guidelines (2.1), 11,15-16

Caution and Error Messages (2.1), 1,2-3

DSNFi, File structure for (2.1A), 3.1,5-8

Economic Evaluation Methods (2.1A), 3,1,3-5

ECONOMICS, Electric Rate Structure (2.1C), 5,3,1-3

Electrical Generation Strategies (2.1B), 4,2,1-2

Functional Values, Development of (2.1B), 3,4,1-2

Functional Values, Example Inputs (2.1D), 12,1-2,4

Glazing Optimization Study (2.1A), 3,3,4-5

Graphs from DOE-23 (2.1C,D), 10,3,5-7

Hourly reports ,13,1,4

LOADS, High heating loads with low cooling

loads (2.1C vs D)...12,2,47

Ice Storage Systems, How to Model (2.1C), 8,1,3-5

Input Macros for Residential Windows (2.1D), 12,1,5-17

LDSOUT, File structure for (2.1A), 3,1,6-8

Metric Option in 9.1C, 4,3,1

Output Reports (2.1A), 2,2-4,6

PLANT, Direct Cooling in (2.1A), 3,1,2

Power Induction Units (2.1B), 4,1,2

Reports (Upgraded) in 2.1B, 4,4,1-2

Schedules, Preparation of (2.1B), 4,1,3; 4,2,4; 9,3,2-3

Systems, Developments in (2.1C), 5,3,4-5

SYSTEMS, Sizing Option in (2.1A), 3,3,3

Stud Wall Construction (2.1A), 2,3,4

Sample Run Book Overview (2.1C), 6,2,1

Sunspace/Atrium Model in 2.1C, 5,3-1,2-5

VAV, Elevated Supply Air Temps (2.1B), 4,3,2-3

VAV, Fan Sizing (2.1A), 2,2,7-8

Weather, Processing Nonstandard (2.1C,D), 10,3,5-6

DOE–2.1

Articles related to Version 2.1

Custom Weighting Factors

Input Guidelines, 11,15-16

Caution and Error Messages, 1,2,3

WRISC, 1,2,4

Bugs

About bugs, 1,1,3

BDL, 11,4-6, 1,2,6

LOADS, 1,1,6

SYSTEMS, 1,1,7; 1,2,7-8

PLANT, 1,1,9-10, 1,2,8

Weather, 1,2,5

Documentation Updates

BDL Summary, 1,1,11-14, 2,9-12

Reference Manual, 1,1,11-14

Sample Run Book, 1,1,11-14

Users Guide, 1,1,11-14

LOADS

EQUIPMENT-KW..1,1,19

verification reports, 1,1,17-18

passed from SYS to PLT, 1,1,18

SHADING COEF, 1,1,17

schedules, 1,2,14

PLANT

BEPS (report), 1,1,19

minimum input, 1,1,20

HOT-WATER, 1,2,13

SYSTEMS

COOL-CONTROL, 1,2,13

EQUIPMENT KW, 1,1,19

MIN CFM RATIO, 1,1,19

RETURN CFM, 1,2,13

PTAC, 1,2,13

SYSTEM-FANS, 1,2,13

thermostat, 1,2,14

WEATHER

Tapes, 1,1,17

DOE–2.1A

Articles related to Version 2.1A

Automatic Custom Weighting Factors, 2,2,3

CIRA, 3,2,2

Direct Cooling in PLANT, 3,1,2

DOE-2 vs BLAST Comparison, 3,3,1-3

DOE-2 vs CERL Data for VAV and Reheat, 3,2,3

DOE-2 on a Microcomputer, 2,1,2

DOE-2 and Research at LBL, 3,2,1-8

Economic Evaluation Methods, 3,1,3-5

Fan Sizing for VAV Systems, 2,2,7-8

File Structure for LDSOUT and DSNFIL, 3,1,6-8

Glazing Optimization Study, 3,3,4-5

Output Reports, 2,2,4-6

New Features in 2.1A, 2.11, 2,2,1

Sizing Option in SYSTEMS, 2,3,3

Stud Wall Construction, 2,3,4

Using DOE-2 in the Design Process, 3,2,4

Bugs

All bugs, 3,4,3-6

BDL, 2,1,3-6, 2,2,9-10, 2,3,5, 3,1,9-10

3,1,13, 3,3,3

LOADS, 2,1,7, 2,3,5, 3,1,10

SYSTEMS, 2,1,8-12, 2,2,10-11, 2,3,5, 3,1,10-12, 3,2,5, 3,3,3

PLANT, 2,1,12-14, 2,3,5, 3,1,12

ECON. 2,2,11

WEATHER, 2,1,5

Documentation Updates

BDL Summary, 2,1,15

Reference Manual, 2,1,16-20

Users Guide, 2,1,16

ECONOMICS

symbol table, 2,1,21

INCREMENTAL-INVESTMENTS, 2,2,13
LOADS
building shades. 2:3,6
DHW heater. . 2:1,22
DHW temp. . 2:1,12
heat recovery. 2:2,12
MULTIPLIER. . 2:3,6
symbol table. 2:1,21

PLANT
BEPS (report) . 2:3,6
cooling towers. 2:2,12
equipment combinations. . 3:2,6
symbol table . 2:1,21

SYSTEMS
ABORT command. 2:1,22
DDS system. . 3:1,13
residential ground water heat pump. 3:2,6
sizing/behavior of systems . 2:1,22-23
symbol table . 2:1,21

DOE-2.1B
Articles related to Version 2.1B
Electrical Generation Strategies. 4:2,1-2
Elevated Supply Air Temp. VAV. 4:3,2-3
Energy Efficiency in Singapore. . 5:1,1-2
Functional Values, Development of. . 3:4,1-2
New Features in 2.1B. . 2:1,1,2-2
Powered Induction Units. 4:1,2
Preparing Schedules. 4:1,3: 4:2,4
Sky Simulator at LBL. 4:2,3
Upgraded Reports in 2.1B . 4:2,4-5

BUGS
All bugs . 9:3,2-3
symbol table full. . 9:2,2

DOE-2.1D
Articles related to Version 2.1D
Alphabetical cross index of commands and keywords . 12:2,7-46
BDL Summary. . 9:4,2-3
OECDOEDC California Compliance Tool. . 12:4,1,12-14
Cooling Towers, Hot Tips . 13:3,2-3
doE-Plus Pre- and Post-Processor. 12:4,1,12-14
Energy Analysis of the Texas State Capitol Restoration. 13:4,3-4
Graphical Tools Calibrate DOE-2. 12:4,1,12-14

DoE-2 User News, Vol.13, No.4
-14-
Plant Operating Strategies (2.1D) 12:3,2-15
Sample Run Book ... 2:4,2-3
Southern California Edison's "Design Assistance Program" ... 12:2,48
BDL symbol table full (2.1D) ... 11:1,5
Documentation Updates
Basic Manual
System type: HP ... 11:1,21-22
System type: RLU ... 11:1,16-20
System type: PMZS ... 11:2,5-7
System type: PSZ ... 11:2,1-2
System type: PVAVS ... 11:2,2-4
System type: VAVS ... 11:2,8-10
BDL Summary ... 11:3,27; 12:1,21-24
Supplement ... 11:4,2-3; 12:3,31
ECONOMICS Subprogram
INCREMENTAL-INVESTMENTS (2.1A) ... 2:2,13
New Electrical Rate Structure (2.1C) ... 5:3,1-3
symbol table (2.1A) ... 2:1,21
LOADS Subprogram
building shades (2.1A) ... 2:3,6
EQUIPMENT KW (2.1) ... 1:1,19
Daylighting (2.1B) ... 5:4,7
Daylighting with Multiple Skylights (2.1D) ... 13:2,2-5
DHW heater (2.1A) ... 2:1,22
DHW temp (2.1A) ... 2:1,12
heat recovery (2.1A) ... 2:2,12
high heating loads with low cooling loads (2.1C vs D) ... 12:2,4-7
hourly report variables (2.1B) ... 4:1,15
MULTIPLIER (2.1A) ... 2:3,6
run times 2.1B vs 2.1C ... 7:1,2
schedules (2.1) ... 12,14
SET-DEFAULT, ROOF + EXT-WALL (2.1C) ... 8:3,5
SHADING COEF (2.1) ... 1:1,17
symbol table (2.1A) ... 2:1,21
SYSTEMS to PLANT (2.1) ... 12:3,2-15
verification reports (2.1) ... 11:1,17-18
DOE-2.1E
Articles related to Version 2.1E
New Features in 2.1E ... 13:1,2-3
MICROCOMPUTER PROGRAMS
DOE-2 Related
A Minute Per Zone on PC's ... 11:1,2-4
CECDOECD California Compliance Tool ... 12:4,1,12-14
COMPLY24 [Calif Compliance Tool] ... 12:2,2-5
DOE-2 on a Microcomputer (2.1A) ... 2:3,1-2
DOE-Plus Pre/Post-Processor (2.1D) ... 11:4,4-13,13:2,4-56
EPRI/DOE Collaboration ... 12:4,4-5
Evaporative Cooling ... 12:4,1
Graphs from DOE23 (2.1C,D) ... 10:3,5-7
MICRO-DOE2 (2.1C) ... 7:4,2-3
PC-DOE Overview (2.1C) ... 12:2,2-3
PRC-DOE Description (2.1D) ... 13:4,11
Quick Analysis of Outputs (2.1C,D) ... 10:2,7-12
Using PC-DOE (2.1C) ... 7:2,4-5
Other
ADM-2 (2.1C) ... 7:2,6-5
CIRA (2.1A) ... 3:2,2
Daylighting Design Tool Survey ... 11:2,12-17
Microcomputer Update (2.1C) ... 8:1,2
SUPERLITE (2.1C) ... 8:2,1
WINDOW-2.0 (2.1C) ... 8:4,2-3
WINDOW-3.1 (2.1C,D) ... 10:2,5-6
PEAR (2.1C) ... 8:2,2
WRISC (2.1) ... 1:2,4
PLANT Subprogram
BEPS (report) (2.1) ... 1:1,20
BEPS (report) (2.1A) ... 2:3,6
BEPS (lighting) (2.1B) ... 5:4,6
cooling towers (2.1A) ... 2:2,12
Direct Cooling in PLANT (2.1A) ... 3:1,2
equipment combinations (2.1A) ... 3:2,6
HOT-WATER (2.1) ... 1:2,4-7
ice storage (2.1B) ... 5:4,7
minimum input (2.1) ... 1:1,20
Plant Operating Strategies (2.1D) ... 12:3,2-15
symbol table (2.1A) ... 2:1,21
SYSTEMS Subprogram
ABORT command (2.1A) ... 2:1,22
BEPS (hourly report variables) (2.1C) ... 6:4,2
bypass system (2.1C) ... 2:2,12
COOL-CONTROL (2.1) ... 1:2,13
cooling/heating, LOADS to PLANT (2.1B) ... 4:1,5
dual systems (2.1B) ... 3:2,4-7
EQUIPMENT KW (2.1) ... 1:1,19
fan coil units (2.1B) ... 5:4,6
heating/cooling unit ventilation (2.1B) ... 4:2,6
kitchen exhaust (2.1B) ... 4:2,5
MIN CFM RATIO (2.1) ... 11:1,19
PIU (2.1D) ... 11:1,16-20
PMZS (2.1D) ... 11:2,5-7
PSZ (2.1D) ... 11:2,2-4
PTAC (2.1D) ... 12:13
PVAVS (2.1D) ... 11:2,8-10
residential ground water heatpump (2.1A) ... 3:2,6
specifying occupancy (2.1C) ... 2:4,2
startup controls (2.1B) ... 3:4,7
steam radiation, with vent (2.1B) ... 4:2,5
steam radiation, without vent (2.1B) ... 4:2,5
symbol table (2.1A) ... 2:1,21
SYSTEMS-FANS (2.1) ... 12:2,13
VVT systems (2.1A) ... 2:3,3
Warmup cycle (2.1C) ... 8:3,5
VALIDATION
Validating DOE-2: Collins Bldg (2.1C) ... 8:3,2-4
DOE-2 vs BLAST Comparison (2.1A) ... 3:3,1-3
DOE-2 vs CERL Data: VAV and Reheating (2.1A) ... 3:2,3
WEATHER
Data for DOE-2 (2.1C) ... 7:4,9-14
Nonstandard Weather Data (2.1C,D) ... 10:2,2-6
Processor Update (2.1C) ... 7:3,8-10
Tapes (2.1) ... 1:1,17
Weather Utility Program (2.1C) ... 7:3,10-12
DOE-2 DIRECTORY

Program Related Software and Services

Mainframe Versions of DOE-2

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE-2.1D (Source Code)</td>
<td>For DEC-VAX mainframe or SUN-4 mini-computer; contact the Simulation Research Group for directions on obtaining the program.</td>
<td>Simulation Research Group
Bldg. 90, Room 3147
Lawrence Berkeley Laboratory
Berkeley, CA 94720
Contact: Kathy Ellington
Phone: (510) 486-5711
FAX: 486-4089/5172</td>
</tr>
<tr>
<td>DOE-2.1D (Source Code)</td>
<td>For DECVAX, Order #159-D6220-00</td>
<td>Energy Science and Technology Software Center
P.O. Box 1020
Oak Ridge, TN 37831-1020
Contact: Phone: (615) 576-2006
FAX: (615) 576-2865</td>
</tr>
<tr>
<td>DOE-2.1C (Source Code)</td>
<td>For IBM3083, Order #158-13083-00
For DECVAX11, Order #158-DVX11-00</td>
<td>Finite Technologies, Inc
821 N Street, #102
Anchorage, AK 99501
Contact: Scott Henderson
Phone: (907) 272-2714
FAX: (907) 274-5379</td>
</tr>
<tr>
<td>FTE-DOEv2.1D (Source Code)</td>
<td>This is a highly optimized and basically platform independent version of the DOE-2.1D source code. Will compile for most computing systems. The original LBL 2.1D source code is also available in a variety of distribution formats. Site licenses and educational discounts are available. Also available is the full set of program documentation as distributed by NTIS and weather files (TMY and TRY) in a variety of distribution formats.</td>
<td>[See User News Vol.12, No.4, p.16 for more information]</td>
</tr>
</tbody>
</table>

Microcomputer and Pre-and Post-Processor Versions of DOE-2

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRC-DOE2 (For Microcomputers)</td>
<td>A fast, robust and up-to-date PC version of DOE-2.1D. Runs in extended memory, is compatible with any VCOI compliant memory manager and includes its own disk caching. 377 weather data files available (TMY, TRY, WYEC, CTZ) for the U.S. and Canada</td>
<td>Partnership for Resource Conservation
140 South 34th Street
Boulder, CO 80303
Contact: Paul Reeves
Phone or FAX: (303) 499-8611</td>
</tr>
<tr>
<td>PRC-TOOLS</td>
<td>A set of programs that aids in extracting, analyzing and formatting hourly DOE-2 output. Determines energy use, demand, and cost for any number of end-uses and periods. Automatically creates 36-day load shapes. Custom programs also available.</td>
<td>Nick Luick
19030 State Street
Corona, CA 91719
Phone: (714) 278-3131</td>
</tr>
<tr>
<td>Pre-DOE (A BDL math pre-processor)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MICRO-DOE2 (For Microcomputers)
MICRO-DOE2 (DOE-2.1D) has been in use since 1987; it is an enhanced PC version of the DOE-2 program (over 500 users worldwide). Two versions of MICRO-DOE2 are available: a regular DOS version for all IBM-PC compatibles and an extended DOS version for 386 or 486 computers only. [See User News Vol.7, No.4, p.2 and Vol.11, No.1, p.2 for more information]

ADM-DOE2 (For Microcomputers)
ADM-DOE2 (DOE-2.1D) is for professional energy analysts who require a state-of-the-art simulation tool for building energy use. It performs a detailed, zone-by-zone hourly simulation and includes a wide array of modeling features that make it possible to simulate "real buildings". These capabilities offer much greater accuracy and detail than is possible with handbook methods or simplified analysis. [See User News Vol.7, No.2, p.2 for more information]

DOE-Plus™ (For Microcomputers)
DOE-Plus is used to interactively input a building description, run DOE-2, and plot graphs of simulation results. Features include interactive error checking, context-sensitive help for all DOE-2 keywords, a 3-D view of the building that can be rotated, and several useful utilities. DOE-Plus is a complete implementation of DOE-2. [See User News Vol.11, No.4, p.4 and Vol.13, No.2, p.54 for more information]

Prep™
Prep is a batch preprocessor that enables conditional text substitution, expression evaluation, and spawning of other programs. Prep is ideal for large parametric studies that require dozens or even thousands of DOE-2 runs.

"DOE-24/Comply-24" (For Microcomputers)
DOE-24 is a special DOE-2 release which is both a California-approved compliance program for the state's 1992 non-residential energy standards, and a stand-alone version of DOE-2.1D which includes a powerful yet easy-to-use input preprocessor. A free demonstration program is available upon request. [See User News Vol.12, No.2, p.3 for more information]

FTI-DOE2.1D (For Microcomputers)
Highly optimized version of DOE-2.1D available for the following operating systems: DOS, VMS, ULTRIX, SCO UNIX, RS/6000 (AIX), NeXT and SUN Spare. Call for more information. [See User News Vol.12, No.4, p.16 for more information]

Graphs from DOE-2 (For Microcomputers)

DOE-2 User News, Vol.13, No.4
CEDDOEDC (For Microcomputers)
CEDDOEDC (Version 1.0A) is a microcomputer version of DOE-2.1D, integrated with a pre- and post-processing system that was designed strictly for compliance use within the State of California. It generates some of the standard compliance forms as output.
[See User News Vol.12, No.4, p.13 for more information]

RESOURCES

DOE-2 User News
Sent without charge to DOE-2 users, the newsletter prints documentation updates and changes, bug fixes, inside tips on using the program more effectively, and articles of special interest to program users.
Regular features include a directory of program-related software and services and an order form for documentation. In the summer issue an alphabetical listing is printed of all commands and keywords in DOE-2, and where they are found in the documentation. The winter issue features an index of articles printed in all the back issues.

DOE-2 Training
DOE-2 courses for beginning and advanced users.

Simulation Research Group
Bldg. 50, Room 3147
Lawrence Berkeley Laboratory
Berkeley, CA 94720
Contact: Kathy Ellington
Phone: (510) 486-5711
FAX: (510) 486-4089 or -5172
E-mail: kathy@gundog@lbl.gov

Energy Simulation Specialists
64 East Broadway, Suite 230
Tempe, AZ 85282
Contact: Marlin Addison
Phone: (602) 967-5278

JCEM/U. Colorado
Campus Box 428
Boulder, CO 80309-0428
Contact: Prof. Jan Kreider
Phone: (303) 492-3915

National Climatic Data Center
Federal Building
Asheville, North Carolina 28801
(704) 259-0871 climate data
(704) 259-0682 main number

California Energy Commission
Bruce Maeda, MS-25
1516-9th Street
Sacramento, CA 95814-5512
1-800-772-3300 Energy Hotline

ASHRAE
1751 Tillie Circle N.E.
Atlanta, GA 30329
(404) 636-8400

Weather Tapes
TMY (Typical Meteorological Year)
TRY (Test Reference Year)
CTZ (California Thermal Climate Zones)

WYEC (Weather Year for Energy Calculation)
<table>
<thead>
<tr>
<th>Consulting Engineers</th>
<th>Consultant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craig Cattelino</td>
<td>Greg Cunningham</td>
</tr>
<tr>
<td>Burns & McDonnell Engineers</td>
<td>Cunningham + Associates</td>
</tr>
<tr>
<td>8055 E. Tufts Avenue, Suite 330</td>
<td>512 Second Street</td>
</tr>
<tr>
<td>Denver, CO 80237 (303) 721-9292</td>
<td>San Francisco, CA (415) 465-2220</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Microcomputer DOE-2 for European Users</th>
<th>Consultant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werner Gygli</td>
<td>Jeff Hirsch</td>
</tr>
<tr>
<td>Informatik Energietechnik</td>
<td>2138 Morongo</td>
</tr>
<tr>
<td>Weiherweg 19 CH-8604 Volketswil Switzerland</td>
<td>Camarillo, CA 93010 (805) 482-5515</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Large Facility Modeling</th>
<th>Computer-Aided Mechanical Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>George F. Marton, P.E.</td>
<td>Mike Roberts</td>
</tr>
<tr>
<td>1129 Keith Avenue</td>
<td>Roberts Engineering Co.</td>
</tr>
<tr>
<td>Berkeley, CA 94708 (510) 841-8083</td>
<td>11946 Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>Kansas City, MO 64145 (816) 942-8121</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mainframe DOE-2 for European Users</th>
<th>Consultant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joerg Tscherry</td>
<td>Philip Wemhoff</td>
</tr>
<tr>
<td>EMPA, Section 175</td>
<td>1512 South McDuff Avenue</td>
</tr>
<tr>
<td>8600 Dubendorf Switzerland</td>
<td>Jacksonville, FL 32205 (904) 632-7393</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consultant</th>
<th>Consultant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven D. Gates, P.E.</td>
<td>Donald E. Croy</td>
</tr>
<tr>
<td>Building HVAC Design/Performance Modeling</td>
<td>CAER Engineers, Inc.</td>
</tr>
<tr>
<td>5718-A Fair Oaks Boulevard</td>
<td>814 Eleventh Street</td>
</tr>
<tr>
<td>Fair Oaks, CA 95282 (916) 638-7540</td>
<td>Golden, CO 80401 (303) 279-8136</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanical Engineers</th>
<th>DSM and Energy Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuck Sherman</td>
<td>Michael W. Harrison, P.E.</td>
</tr>
<tr>
<td>64 East Broadway, Suite 230</td>
<td>305 West Mercury</td>
</tr>
<tr>
<td>Tempe, AZ 85282 (602) 967-5278</td>
<td>Butte, MT 59701 (406) 723-4061</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consulting Engineers</th>
<th>Consulting Engineers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeff Ponsness, P.E.</td>
<td>Susan Reilly</td>
</tr>
<tr>
<td>Criterion Engineers</td>
<td>Enermodal Engineering</td>
</tr>
<tr>
<td>5331 SW Macadam Ave., Suite 205</td>
<td>1554 Emerson Street</td>
</tr>
<tr>
<td>Portland, OR 97201 (503) 224-8606</td>
<td>Denver, CO 80218 (303) 861-2070</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consultant</th>
<th>This Space Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martyn C. Dodd</td>
<td></td>
</tr>
<tr>
<td>Gabel Dodd Associates</td>
<td></td>
</tr>
<tr>
<td>761 Sir Francis Drake Blvd.</td>
<td></td>
</tr>
<tr>
<td>San Anselmo, CA 94960 (415) 456-7588</td>
<td></td>
</tr>
</tbody>
</table>
DOE-2 Program Documentation

<table>
<thead>
<tr>
<th>Document</th>
<th>Order Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE-2 Basics Manual (2.1D)</td>
<td>DE-920-07955</td>
<td>43.00*</td>
</tr>
<tr>
<td>BDL Summary (2.1D)</td>
<td>DE-890-17726</td>
<td>26.00*</td>
</tr>
<tr>
<td>Sample Run Book (2.1D)</td>
<td>DE-890-17727</td>
<td>66.00*</td>
</tr>
<tr>
<td>Reference Manual (2.1A)</td>
<td>LBL-8706, Rev. 2</td>
<td>115.00*</td>
</tr>
<tr>
<td>Supplement (2.1D)</td>
<td>DE-890-17728</td>
<td>59.00*</td>
</tr>
<tr>
<td>Engineers Manual (2.1A)</td>
<td>DE-830-04575</td>
<td>50.00*</td>
</tr>
</tbody>
</table>

* Prices shown are for shipment within the United States; for shipment to foreign countries, double the U.S. prices.

Order from:
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Phone (703) 487-4650
FAX (703) 321-8547