VOLUME 23, NO. 3 V MAY/JUNE 2002 (PUB-439)

BUILDING ENERGY SIMULATION

For Users of EnergyPlus, SPARK, DOE-2, BLAST, Genopt, Building Design Advisor, ENERGY-10 and their Derivatives

What's New ?

.....Release of EnergyPlus 1.0.1

EnergyPlus 1.0.1 may be downloaded free of charge from www.energyplus.gov. Turn to p. 2 for the new features.

.....EnergyPlus Support Tools

The Deringer Group of Berkeley, CA, is offering free EnergyPlus support tools. See page 4.

.....Release of ENERGY-10 1.5

Turn to p. 9 or visit www.sbicouncil.org to learn what's new in ENERGY-10, Version 1.5.

.....Release of VisualSPARK 1.0.2

Version 1.0.2 of VisualSPARK is a free. download from SimulationResearch.lbl.gov. User manuals are available as PDF files.

......DOE-2 Bug/Change List

The entire, up-to-date bug fix/additions list for DOE-2.1E is available as a text file on our web site. Go to SimulationResearch.lbl.gov and look under "DOE-2" in the left menu

US DOE Drops CADDET Support

As of April 1, 2002, the U.S. stopped its pation in CADDET, the Center for the Analysis and Dissemination of Demonstrated Energy Technologies. A CADDET member for over 0 years, the Department of Energy dropped CADDET activities due to budget cutbacks. However, you can still keep current by ribing to E-nnouncements, a free electronic newsletter. Go to www.caddet.org.

IBPSA-USA Free Membership

IBPSA-USA has waived its annual membership fee for 2002; see p. 13.

What's Inside ?

Features.....

- 2 New Features in EnergyPlus 1.0.1
- 3 Ask an EnergyPlus Expert
- 4 EnergyPlus Support Tools
- 4 New EnergyPlus Weather Data
- 5 Innovative Use of EnergyPlus in a New Federal Building
- 6 DOE-2 Puzzler: Materials and Layers
- 10 Pacific Gas & Electric's Educational Programs
- 27 Release of VisualSPARK 1.0.2

Software

- 13 BLAST News
- 8 Building Design Advisor 2.0
- 7 DOE-2.1E
 - 8 Training
 - 8 Help Desk
 - 30 Directory of DOE-2 Software and Services
 - 32 Support Tools for DOE-2
 - 33 Special Versions of DOE-2
 - 34 International DOE-2 Resource Centers
 - 36 DOE-2 Consultants
- 6 DoeRayMe, a New Screening Tool Application
- 9 ENERGY-10 Version 1.5 ... Release!
- 2 EnergyPlus 1.0.1
 - 28 Directory of EnergyPlus Software and Services 28 Support Tools for EnergyPlus
- 11 GenOpt 1.1.2
- **12** Software from Lawrence Berkeley Laboratory
- 27 VisualSPARK 1.0.2

Building Science Reports

14 Thermal Bridge Modeling in EnergyPlus

Departments.....

- 6 EnergyPlus User Group
- 11 BLDG-SIM Mailing List
- **10** Web Sites for Building Energy Efficiency
 - Building Simulation Weather Data
 - USDOE Building Energy Tools Directory
 - Case Studies of High Performance Buildings
 - Time Zone Converter
 - CoolRuler Utility
- 27 Meetings, Conferences, Symposia

EnergyPlus Version 1.0.1

To download a free copy of the program go to

www.energyplus.gov

New Features

- 1. Linux version
- 2. End-use meters
- 3. Auto sizing of system components and equipment.
- 4. Trombe wall
- 5. Photovoltaic calculations (through TRNSYS link)
- 6. New input file example for each new feature.
- 7. Air-to-air heat pump
- 8. Water-to-water heat pump (Ground loop heat exchanger and Ground Source Heat Pump)
- 9. Air Cooled Condenser
- 10. Evaporatively cooled condenser (simplified)
- 11. IDFEditor (support for ',' as decimal point)
- 12. Dehumidification Control (Cooling Coil) added for unitary systems. DX coil meets the dehumidification load; uses heating coil to offset excess sensible cooling that is provided.
- 13. DOE-2 Translator Improvements: (INTERIOR-WALL, FIXED-SHADE, LIKE, SET DEFAULT, purchased air solution, bug fixes)
- 14. Major updates to gas heating coil--electric parasitics, part-load performance curve, and fan and coil cycling controls.
- 15. Node connection validation.
- 16. Branch and Node Details report (.bnd file)
- 17. Surface Details report
- 18. Movable transparent insulating material for walls
- 19. Introduction of translation programs for converting previous version input files to latest release
- 20. WinEPDraw utility program
- 21. Versioning on all input data files
- 22. New Window-Related Features
 - Window blind model (slat-type shading devices such as Venetian blinds).
 - Coupling of window blinds to daylighting calculation.
 - More control types for shading devices, including heating season controls.
 - Capability to import a window data file from WINDOW 5; allows EnergyPlus to do annual energy run on a window designed with WINDOW 5.
- Ability to assign a shading device to a window imported from WINDOW 5.
- Calculation of beam solar radiation passing through interior windows (needed for modeling doubleenvelope buildings).
- Window blinds with movable slats and associated slat-angle control options.
- Window gap fill as a mixture of gases rather than a single gas.
- Triangular windows.
- 23. Weather utility updates—now automatically includes ASHRAE 2001 HOF design conditions, typical/extreme periods within weather file, new summary report, and processes new formats such as ASHRAE IWEC and ESP-r text. Weather data now available on EnergyPlus web site for more than 570 locations (80 countries).

- 24. New HVAC system templates:
 - Zone Thermostat
 - Purchased Air
 - Four Pipe Fan Coil
 - Single Boiler Supply Loop

- VAV Single Duct with Reheat
- Packaged Furnace with DX Air Conditioner
- Purchased Hot Water and Chilled Water Supply Loop

Boilers, Plant Supply and Condenser Supply

- Single Chiller Supply Loop
- 25. Version 1.0.1 has been tested against:
 - HVAC BESTEST (IEA SHC Task 22 Building Energy Analysis Tools)
 - ASHRAE RP-1052, Development of an Analytical Verification Test Suite for Whole Building Energy Simulation Programs - Building Fabric
 - ANSI/ASHRAE Standard 140-2001 [BESTEST] (updated results)
- 26. Many HVAC/plant changes, details on request. New or changed items include:
 - Gas Turbine Chiller
 - Heat Recovery in Gas Turbine Chiller
 - Electric Baseboard option

DX Coil
 System night cycle control

Ask An EnergyPlus Expert

Question:

I have a question regarding the difference between EnergyPlus 1.0 and 1.0.1. I had built a model in EnergyPlus 1.0 and it was running fine. When I tried to run it in EnergyPlus 1.0.1, I got several severe errors and couldn't produce any output. Is there any way of updating files without a lot of modification to the original file?

Answer:

There is a transition utility included with version 1.0.1 which will help you move your 1.0 files into 1.0.1 Depending on the objects in your files, some may require further editing to add new information. To learn how to use the transition program, go to the "OtherInformation.pdf" file and read the section entitled "Transition_Vold_Vnew". To reach this document from the EnergyPlus main menu, select "Auxiliary Programs / Developer Guides" then select "Auxiliary Program Information."

Question:

In an EnergyPlus weather file, what does "hour1" represent? Is it the reading at 12:00 AM or 1:00 AM? Is it instantaneous or average for the past 1 hour?

Answer:

We take it to be the temperature for the time period 00:01 to 1:00 AM. If the simulation is using more than 1 time step in an hour, then the temperature used at the time step is a weighted interpolation of the temperature of the current hour with the temperature at the next hour.

To explain, for time=00:15, you will have a 3/4 weight to the temperature for (00:01 to 1:00AM) and a 1/4 weight for the temperature (1:01 to 2:00 AM). Assuming time steps in hour=4.

Most national weather services record observed temperature on the hour (or generally within a few minutes), so it's a snapshot not an average of the temperature for the hour. Again, we take the data as being for the entire hour, 00:01 AM to 01:00 AM. This is true for all the weather files that are available on the EnergyPlus web site.

EnergyPlus is being developed by University of Illinois, CERL, and Lawrence Berkeley National Laboratory, with the assistance of the Florida Solar Energy Center, GARD Analytics, the University of Wisconsin, Oklahoma State University and others. Development of EnergyPlus is supported by the U. S. Department of Energy, Dru Crawley, Program Manager.

Support Tools for EnergyPlus and DOE-2 from The Deringer Group

EzPlus-Parm

This is a standalone Windows tool intended for EnergyPlus parametric analysis. It was designed to simplify the running of multiple parametric EnergyPlus simulations by helping a user organize and edit all needed files.

Draw EzPlus

www.deringergroup.com • www.deringergroup.com •

A tool that displays the 3-D geometry embedded in an EnergyPlus file. The user can toggle between line and surface (fill) presetation modes, and can select to draw any mix of key building objects – floor, walls, roof, windows, and attached and detached shading.

EnergyPlus Online Simulations

One set of tools is online and embedded in the EcoAdvisor, a set of online training modules for sustainable buildings. These tools can be used by anyone and require no special knowledge of EnergyPlus.

EnergyPlus Interface Support Tools

This is a set of stand-alone Windows-based tools intended to make the text-based use of EnergyPlus faster, easier, and more accurate.

DOE-2 Parametric Study Tool -- DOE2Parm

DOE-2 parametric analysis can be complicated because you need to link, run and edit multiple files that can be located anywhere on your computer. DOE2Parm allows you to run the parametric analysis in the same window. DOE2Parm is an MS Windows-based tool.

Founded in 1980, The Deringer Group (TDG) specializes in sustainable and energy efficient building design projects and studies throughout the world. TDG is developing several support tools for EnergyPlus all of which may be freely downloaded.

www.deringergroup.com
 www.deringergroup.com
 www.deringergroup.com
 www.deringergroup.com

New!! EnergyPlus Weather Data

The EnergyPlus development team is pleased to announce that our web site now offers more than 570 weather locations available for download and ready to use with EnergyPlus. There are 275 locations in the United States, 16 California thermal zones, 55 Canadian locations, and 233 international locations in more than 80 countries.

www.deringergroup.com
 www.deringergroup.com

Go to <u>www.energyplus.gov</u>

On the right side, under Weather Data, click on one of the following links: USA, California, Canada or International.

We recommend that you also download the weather utility RPT file for each location. The RPT file includes design data where available, statistics for the weather file, including typical and extreme periods (hottest summer week, coldest winter week, typical spring week, etc), Koppen climate classification, heating and cooling degree days, monthly average minimum and maximum dry bulb and dew point temperatures, undisturbed ground temperatures, direct and diffuse solar radiation, relative humidity, and wind speed and direction.

Innovative Use of EnergyPlus in a New Federal Building

EnergyPlus was instrumental in the design of an innovative 18-floor federal office building to be constructed in San Francisco. In addition, the program contributed significantly to nearly \$9 million in energy costs savings. EnergyPlus was also directly responsible for simplifying the design of the façade, saving almost another \$1.5 million in construction costs.

Architects with the building's design firm wanted to use only natural ventilation for the top 13 floors; security concerns mandated that the lower floors be completely sealed. However, they were hesitant to move forward with the idea without simulation results to assure them that the building could meet comfort standards without air conditioning.

SAN FRANCISCO, CA

Using EnergyPlus and its link to the COMIS multizone air flow program, Philip Haves (phaves@lbl.gov) of LBNL convinced both the client and the design team that natural ventilation would keep the building comfortable during San Francisco's brief but significant episodes of hot weather.

The new San Francisco building uses natural ventilation to provide cooling without the use of fans or refrigeration. For most of the year, the building is cooled by air flow through windows controlled by the occupants. When the outside air is too hot to provide cooling during the daytime, heat from the interior is absorbed by exposed heavy-weight ceiling slabs and then removed by ventilating the building at night when the air is cooler. Cooling and ventilation were maximized by orienting the building and its windows to take advantage of natural wind conditions.

This is the first application of EnergyPlus to model natural ventilation flows for a new, major building. Implementation of natural ventilation required redesign of the interior office space. "Instead of having cellular offices around the outside of the building and open plan office space in the interior, free air flow required open plan office space on the exterior and cellular offices and other enclosed spaces along the spine. These enclosed spaces have lowered false ceilings with space above to allow air driven by wind pressure to flow from one side of the building to the other," explains Haves.

Although LBNL's contribution to the design of the building envelope has been completed, Haves is still working on the project, helping the designers to develop control strategies that optimize indoor comfort by opening and closing different windows at different times of the day. One problem they will address is how to combine these automated strategies that ensure comfort for everyone in the building with the desire to allow individuals to have control of windows near them. LBNL will also be helping with the innovative aspects of the design of a federal courthouse to be built in Los Angeles.

Excerpt from an article by Robin Johnston, Science Writer, LBNL Technology Transfer Department

This newsletter was prepared as an account of work sponsored by the United States Government (USG). While this document is believed to contain correct information, neither the USG, nor any agency thereof, nor the Regents of the University of California (RUC), nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by its trade name, trademark, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the USG or any agency thereof, or the RUC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or of the Regents of the University of California

You are invited to test DoeRayMe, a new DOE-2.1E screening tool application currently being developed by Jason Glazer, P. E., of GARD Analytics, Inc. DoeRayMe is a simple and flexible interface that uses a specially

developed DOE-2 input file (template) that contains special codes describing the parameters available to

be changed in the user interface. This allows new screening tools to be developed by any DOE-2 user. Please visit the DoeRayMe web site at http://www.gard.com/DoeRayMe.

Question:

We drive DOE-2.1E through our user interface. On several occasions, I have gotten the error "Material/Layer too thin or light" or "Material/Layer too thick or heavy". Is there some calculation or data range to figure out a priori if a construct/layer/material combination will pass DOE-2's muster?

Answer:

I don't think there is any 100% accurate way of determining if a DOE-2 construction will successfully pass through the response factor calculation. The "too light" case means that DOE-2 was unable to calculate a response factor series for the wall with a 1-hour time step. The "too heavy" case means that after obtaining 100 response factors the program couldn't find a response factor common ratio yet. So very roughly speaking the wall time constant must be somewhere between 1 hour and 100 hours.

For a single layer we can calculate a time constant: $RC = 9^{**}2 * dens * sh / k$

where

- thermal resistance specific heat R thickness sh = = θ С conductivity
- = thermal capacitance dens density k =

Some examples:

- 8 inch concrete block, perlite filled, has a time constant of 43.6 hours. No problem calculating response factors.
- Heavy weight concrete, dried, 12 inch, has a time constant of 37 hours. Again no problem.
- More interesting, wd01 3/4 inch soft wood, has a time constant of 0.62 and response factors are calculated.
- But pw03 1/2 inch plywood, has a time constant of 0.26, and does not produce response factors.
- Somewhere around RC = 0.5 hours is likely the rather mushy boundary for "too light or too thin". For multilayer walls the case is more complicated. However, if one of the layers has RC > 0.5 it should be OK.
- I haven't explored the "too heavy" end; 2 feet of dirt with a time constant of around 120 hours is OK. I think 3 feet will fail.

Please email your "DOE-2 Puzzler" guestions to klellington@lbl.gov

Į	DOE	-2 5			
DC ba	DOE-2.1E (version 119) 1,000-Zone version for Windows from ESTSC; other vendors of DOE-2 based programs are listed on our web site: http://SimulationResearch.Ibl.gov > DOE-2 Cost is as follows: \$ 300 U.S. Government, non-profit Educational \$ 575 U.S., Mexico, Canada \$ 1268 Japan only \$ 1075 All Other Non-U S				
DC	DE-2 Documentation on a CD from ESTSC	- Cost US\$100			
	What is included on the CD?				
	 DOE-2 Reference Manual (Part 1) DOE-2 Reference Manual (Part 2) 	 DOE-2 BDL Summary (2.1E) DOE-2 Engineers Manual (2.1A) 			
	 DOE-2 Supplement to the Reference Manual 	al (2.1E)			
Or	der Software and ESTSC Documentation				
	Ed Kidd NCI Information Systems, Inc. Energy Science and Technology Software Center P.O. Box 1020 Oak Ridge, TN 37831	(ESTSC) Phone: 865/576-1037 Fax: 865/576-6436 Email: estsc@adonis.osti.gov			
Fr	ee DOE-2 Documentation (http://Simulation	Research.lbl.gov > DOE-2 > Documentation)			
•	DOE-2 Basics (2.1E)	DOE-2 Basics Manual and Update Packages 1, 2, 3			
•	Update Package #1: DOE-2.1E Basics, the Supplement and BDL Summary	and 4, not included on the ESTSC CD, consist of scanned pdf files and may be downloaded from our web site. You may also request the same information on a CD by sending email to klellington@lbl.gov.			
•	Update Package #2: (Version 107, DOE-2.1E) BDL Summary and Supplement.	The files need to be printed and the update pages inserted into the existing DOE-2 manuals.			
•	Update Package #3: Appendix A of the Supplement.	Note that Update Packages are not cumulative and each one contains different information. You have to			
•	Update Package #4: (1000-zone DOE-2.1E) BDL Summary.	download all four packages to update the DOE-2 documentation completely.			
-	DOE-2 Modeling Tips (pdf)	DOE-2 Modeling Tips a compilation of all the "how to" articles from the <i>Building Energy Simulation User</i> News (through 2001).			

DOE-2 listings are continued on the next page

Purchase DOE-2 Documentation

DOE-2 Sample Run Book (2.1E) -- The Sample Run book is the only remaining DOE-2 manual not available electronically. It must be purchased separately from NTIS; information is at http://SimulationResearch.lbl.gov > DOE-2 > Documentation

DOE-2 Training	Private or group DOE-2 courses for beginning and advanced users:
_	Contact Marlin Addison at (602) 968-2040, or send email to marlin.addison@doe2.com

DOE-2 Help Desk

Email, phone or fax the Simulation Research Group with your questions (klellington@lbl.gov). Phone: (510) 486-5711, Fax: (510) 486-4089

Don't forget to take our User Survey. Go to http://SimulationResearch.lbl.gov and click on "Survey" in the left menu. Thanks!

Building Design Advisor 2.0

Decision making through the integrated use of multiple simulation tools and databases

The **Building Design Advisor (BDA)** is a Windows[®] program that addresses the needs of building decisionmakers from the initial, schematic phases of building design through the detailed specification of building components and systems. The BDA is built around an object-oriented representation of the building and its context, which is mapped onto the corresponding representations of multiple tools and databases. It then acts as a *data manager* and *process controller*, automatically preparing input to simulation tools and integrating their output in ways that support multi-criterion decision-making. BDA 3.0, Beta version 2, is available for Beta and includes links to these simulation tools: **SGE** (a grapical editor for schematic design), **DElight** (a daylighting simulation tool), **ECM** (a simplified electric lighting simulation tool) and the **DOE-2.1E** building energy simulation program.

ECM, the **new electric lighting simulation tool** in BDA 3.0 beta, is integrated through BDA with DOE-2. BDA's Schematic Graphic Editor (**SGE**) allows placement of electric lighting luminaires and specification of reference points for daylight-based electric lighting controls. Moreover, BDA now has the capability of **running DOE-2 parametrically** to generate a plot that shows the relationship between effective aperture and energy requirements. BDA 3.0 beta provides the added functionality of working with either **English units or Metric units**.

Current research and development efforts are focused on the development of links to **Desktop Radiance**, a Windows 95/98/NT version of the **Radiance** lighting/daylighting simulation and rendering software.

The BDA source code is available for licensing; if interested, please contact Dr. Papamichael at K_Papamichael@lbl.gov. To learn more about the BDA software and to download a copy of the latest public version (BDA 2.0), go to http://gaia.lbl.gov/BDA

For Beta Testing of BDA 3.0, contact Vineeta Pal at VPal@lbl.gov.

RELEASE OF ENERGY-10, VERSION 1.5

ENERGY-10 is a design tool for smaller residential or commercial buildings that are less than 10,000 ft² or buildings that can be treated as 1- or 2-zone increments. It performs whole-building energy analysis for 8760 hours/year, including dynamic thermal and daylighting calculations. ENERGY-10 was specifically designed to facilitate the evaluation of energy-efficient building features in the very early stages of the design process.

Version 1.5 Upgrades

Life Cycle Costs

A whole new capability is included to evaluate life-cycle costs. The year-by-year cash flow of the building is determined and discounted to the present value. The difference between Bldg-1 and Bldg-2 is determined in terms of net present value, NPV (the difference in life-cycle costs), internal rate of return, benefit-to cost ratio, or simple payback.

Up-to-date compiler

The entire program has been ported to 32-bit and (with the exception of the CNE thermal simulation engine) programmed in Visual C++ 6.0, the current Microsoft compiler. One benefit that users will appreciate is that it is no longer necessary to close ENERGY-10 before starting a new project.

More Wall Layers

In previous versions, you were restricted to 6 layers in a wall construction. This has now been expanded by 3, giving you the opportunity to define a 7-layer wall plus two air films.

New Graphs

Graphs are programmed in a new and powerful graphing package (Olectra).

New Reports

A Cost Summary report tabulates the results of the life cycle cost evaluation. An HVAC and EES Cost report details the components of HVAC cost and each of the EES costs. A Peak Loads report identifies the peak loads and corresponding HVAC rated capacities for the AutoSize calculations and also the peak loads and consumptions during the annual simulation showing when the peaks occurred.

Douglas K. Schroeder 1331 H Street N.W., #1000 Washington, DC 20004

Tel: 202.628.7400 ext 210 Fax: 202.383.5043 www.sbicouncil.org

Sustainable Buildings Industry Council (SBIC)

ENERGY-10 User Group at http://www.sbicouncil.org/forum

SBIC Bookstore at http://www.sbicouncil.org/store/resources.php#pubs

The *Green Building Guidelines* is SBIC's second generation of sustainable residential design guidelines created in cooperation with the National Association of Home Builders. Written in plain language with complementary illustrations, case studies, and check lists, the *Guidelines* is a valuable resource for builders and even buyers interested in producing or purchasing energy- and resource-efficient homes. Cost is \$50; to order, go to www.sbicouncil.org.

www.gard.com/weather/ *

Building Simulation Weather Data Resource Page

Jason Glazer, the BLDG-SIM moderator, has compiled some good sources for weather data. Links include those for TMY2, WYEC2, CWEC, CWEEDS, IWEC, EnergyPlus Weather, WeatherBank, CIBSE Guide J, etc. If you have additional resources, please send Jason email at jglazer@gard.com.

www.energytools.gov *

U. S. Department of Energy, Building Energy Tools Directory

If you want to find a software tool concerning energy use in buildings, the U.S. Department of Energy has been keeping a list for many years.

www.eren.doe.gov/buildings/ highperformance/case_studies/ *

U. S. DOE, High Performance Buildings Database

Case studies of DOE's high performance buildings.

timezoneconverter.com**

Time Zone Converter

Where am I, how did I get here and what time is it? This web site will help answer two out of three questions

www.fabsoft.com **

CoolRuler v.1.5 (free!)

CoolRuler is a stand-alone applet which may be freely moved around your screen to take measurements (horizontally or vertically). Use centimeters, pixels, inches, or your own system for measurement. Create as many rulers on your screen as you need.

from the BLDG-SIM forum, for users of building simulation tools. To join, send email to <u>bldg-sim-subscribe@gard.com</u>
 from the LockerGnome e-newsletter. To subscribe (free!), go to <u>www.lockergnome.com</u>

© 2002 Regents of the University of California, Lawrence Berkeley National Laboratory. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of the Building Technologies Program, State and Community Programs, Office of Building Systems of the U.S. Dept. of Energy, under Contract No. DE-AC03-76SF00098

Generic Optimization Program

GenOpt is a multi-parameter optimization program; it automatically finds the values of user-selected design parameters that minimize a cost function, such as annual energy use, calculated by an external simulation program like EnergyPlus, SPARK, DOE-2, BLAST, TRACE, TRNSYS, etc.

GenOpt can be used with any simulation program that has text-based input and output. It also offers an interface for adding custom optimization algorithms to its library.

Release of GenOpt 1.1.2

GenOpt 1.1.2 fixes problems in reading simulation output files where the objective function value is followed by a comma. Such output strings can be found, for example, in some EnergyPlus outputs.

Also, a method called 'postProcessObjectiveFunction(int, double[] f)' has been added to the file named 'Optimizer.java'. You can modify this function to easily implement post-processing of the objective function value, such as adding two outputs to seek the minimum of the sum of the two outputs.

Example files have been added to the *GenOpt* web page (http://SimulationResearch.lbl.gov > GenOpt) to help users set up the program to optimize EnergyPlus simulations. *GenOpt* input files still have the same syntax as in version 1.1.1. Therefore, your *GenOpt* input files are compatible with the new version.

GenOpt 1.1.2 (with user manual) may be downloaded free of charge from

http://SimulationResearch.lbl.gov > GenOpt

The Lowdown on Downloads from Lawrence Berkeley National Laboratory

Free Downloads				
BDA 2.0 (Building Design Advisor) A beta version of 3.0 is available from vpal@lbl.gov	gaia.lbl.gov/BDA			
COMIS (multi-zone air flow and contaminant transport model)	www-epb.lbl.gov/comis			
<i>EnergyPlus</i> 1.0.1 (new-generation whole-building energy analysis program, based on BLAST and DOE-2)	www.energyplus.gov or SimulationResearch.lbl.gov > EnergyPlus			
GenOpt [®] 1.1.2 (generic optimization program)	SimulationResearch.lbl.gov > GenOpt			
RADIANCE (analysis and visualization of lighting in design)	radsite.lbl.gov/radiance/			
Imaging System with AutoCAD Release 14)	radsite.lbl.gov/deskrad/			
RESEM (Retrofit Energy Savings Estimation Model) (calculates long-term energy savings directly from actual utility data)	eetd.lbl.gov/btp/resem.htm			
SUPERLITE (calculates illuminance distribution for room geometries)	eetd.lbl.gov/btp/superlite2.html			
THERM 2.1a (models two-dimensional heat-transfer effects in building components where thermal bridges are of concern)	windows.lbl.gov/software/therm/therm.html			
<i>VisualSPARK 1.0.1 (Simulation Problem Analysis and Research Kernel)</i> (connect component models to simulate innovative building envelope and HVAC systems)	SimulationResearch.lbl.gov > VisualSPARK			
WINDOW 5 (thermal analysis of window products)	windows.lbl.gov/software/window/ window.html			
Free Software / Request by Fax	from 510.486.4089			
RESFEN 3.1 (choose energy-efficient, cost-effective windows for a given residential application)	windows.lbl.gov/software/resfen/resfen.html			
Web Based				
Home Energy Saver (quickly computes home energy use) and	hes.lbl.gov and			
	including ov			
(daylighting performance in complex spaces)	radsite.lbl.gov/adeline/			

BLAST*news*

www.bso.uiuc.edu

Building Systems Laboratory, 30 Mech Eng Bldg. University of Illinois, 1206 West Green Street Urbana, IL 61801 Tel: (217) 333-3977 - Fax: (217) 244-6534 support@blast.bso.uiuc.edu

The **Building Loads Analysis and System Thermodynamics (BLAST** program predicts energy consumption, energy system performance and cost for new or existing (pre-retrofit) buildings.

BLAST contains three major sub-programs:

- **Space Load Prediction** computes hourly space loads in a building based on weather data and user inputs detailing the building construction and operation.
- Air Distribution System Simulation uses the computed space loads, weather data, and user inputs.
- **Central Plant Simulation** computes monthly and annual fuel and electrical power consumption.

Heat Balance Loads Calculator (HBLC)

The BLAST graphical interface (HBLC) is a Windowsbased interactive program for producing

BLAST input files. You can download a demo version of HBLC (for MS Windows) from the BLAST web site (User manual included).

HBLC/BLAST Training Courses

Experience with the HBLC and the BLAST family of programs has shown that new users can benefit from a session of structured training with the software. The Building Systems Laboratory offers such training courses on an as needed basis typically at our offices in Urbana, Illinois.

WINLCCID 98

LCCID (Life Cycle Cost in Design) was developed to perform Life Cycle Cost Analyses (LCCA) for the Department of Defense and their contractors.

To order BLAST-related products, contact the Building Systems Laboratory at the address above.

Program Name	Order Number	Price	
PC BLAST Includes: BLAST, HBLC, BTEXT, WIFE, CHILLER, Report Writer, Report Writer File Generator, Comfort Report program, Weather File Reporting Program, Control Profile Macros for Lotus or Symphony, and the Design Week Program. The package is on a single CD-ROM and includes soft copies of the BLAST Manual, 65 technical articles and theses related to BLAST, nearly 400 processed weather files with a browsing engine, and complete source code for BLAST, HBLC, etc. Requires an IBM PC 486/Pentium II or compatible running MS Windows 95/98/NT.	3B486E3-0898	\$1500	
PC BLAST Package Upgrade from level 295+	4B486E3-0898	\$450	
WINLCCID 98: executable version for 386/486/Pentium	3LCC3-0898	\$295	
WINLCCID 98: update from WINLCCID 97	4LCC3-0898	\$195	
The last four digits of the catalog number indicate the month and year the item was released or published. This will enable you to			

see if you have the most recent version. All software will be shipped on 3.5" high density floppy disks unless noted otherwise.

FREE Membership in 2002!!!

International Building Performance Simulation Association USA Affiliate

The IBPSA-USA Board of Directors has waived the annual membership fee for 2002 so joining our organization is easier than ever. If you want to become a member, send an email with your name, company, mailing and email address, and phone and fax numbers to Rick Strand (r-strand@uiuc.edu). You will receive a confirmation email to indicate that you have been accepted for membership.

www.ibpsa.org

Thermal Bridge Modeling in EnergyPlus

by

Olivier Renon^{*} Simulation Research Group Building Technologies Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720-0001

Introduction

We describe here work that has been done on integrating thermal bridge models into the EnergyPlus building energy simulation program. The models used and the assumptions made are presented. Then we focus on how the existing code was modified to incorporate the new models. Finally, we describe how the newly integrated modules were tested.

Thermal Bridges: Description and Modeling

What is a Thermal Bridge?

Thermal bridges are weak points in building insulation. They are located where the thermal resistance is significantly lower than in the surrounding region. Thermal bridges are usually caused by a geometric or material inhomogeneity. The consequences of a thermal bridge in winter are an increase in heat loss, and a reduction of inside surface temperature in the neighborhood of the thermal bridge, possibly resulting in condensation.

There has been tremendous improvement in the thermal insulation of buildings in the last twenty years. This has increased the relative importance of thermal bridges in the overall heat loss. For example, in France the heat losses from thermal bridges in a house that complies with the energy code can be 10% to 15% of the heat loss.

Mathematical Modeling

A thermal bridge can typically be represented as a linear time invariant (LTI) system in the following state-space form:

$$\begin{cases} \dot{T} = AT + BU \\ Y = CT + DU \end{cases}$$
(1)

^{*} Visiting Researcher from Electricité de France

where

- *A*, *B*, *C* and *D* are arrays that characterize the thermal bridge. The values in these arrays depend neither on time nor on system inputs. In a finite-difference calculation the elements of these arrays are determined by applying the conduction equation and Fourier's law to each node.
- The matrix *U* contains the values of the system inputs. For a thermal bridge, the system inputs are the air temperatures in different places around the bridge (outside air temperature, inside air temperature, etc.). You can choose whether or not to specify an air film convection resistance in the system inputs. If not, the temperatures actually correspond to surface temperatures.
- The *T* array contains intermediate calculation variables. For example, for a finite-difference solution to Eq. (1), *T* contains values of the temperature at the mesh nodes. \dot{T} is the derivative array of *T*.
- *Y* is the system output, usually the average heat flux through the configuration.

If the system is solved using finite differences, the size of the arrays can be very large. For a simple configuration, A is about 300 x 300. For more complex configurations, arrays can be 1000 x 1000 or larger.

Reducing Array Size

Large arrays require a lot of computer memory and can lead to very time-consuming calculations, especially in energy software, like EnergyPlus, where the calculations have to be done every time step for up to a year. Therefore, we need to reduce the size of the system. A reduced system that is an approximation to Eq. (1) can be represented as follows:

$$\begin{cases} \dot{X} = A_r X + B_r U \\ Y = C_r X + D_r U \end{cases}$$
(2)

where the arrays A_r , B_r , C_r and D_r are in the 1 x 1 to 4 x 4 range. Unlike *T* and \dot{T} , and the other arrays in system (1), the variables in Eq. (2) have no direct physical meaning; therefore, we call system (2) a "black box."

From "Black Box" to "Gray Box"

Although the variables in system (2) have no direct physical meaning, it is possible to find relationships between these variables and physical quantities such as material properties (conductivity, heat capacity, density and thickness), time constants and steady-state conductance. To find these relationships we have simulated a large number of thermal bridge configurations and have expressed the results, using regression analysis, in terms of a few physical parameters. These parameterized models are then suitable for use in EnergyPlus and other building energy simulation programs.

The Modeling Process

Sisley Modeling

The first step was to model each thermal bridge configuration using a finite difference method. This was done with an Electricité de France (EdF) program called Sisley, whose environment is shown in Fig. 1. In this step, it is important to model a large enough number of different configurations so that the gray box models resulting from the regression analysis are reasonably accurate.

Modeling a thermal bridge configuration with Sisley software yields the state-space arrays (Eq. (1)) for that configuration.

Figure 1: Main Screen of the Sisley Finite Difference Program

Model Reduction

Model reduction transforms the Sisley-generated state-arrays, which are large, to equivalent smaller arrays that approximate the full solution. The reduction method that was used is derived from the Marshall method [11], also called the "modal reduction method." A reduction order of one was found to be accurate enough for the current application. The reduction calculation was done with MatLab [12], into which the reduction algorithm was programmed.

Modal reduction uses numerical methods, such as base changing and eigenvalue selection, that cause the state-space arrays to lose some of their physical meaning, but enough physical meaning is retained so that analysis can be performed to determine what physical parameters the array values are sensitive to.

Sensitivity Study

Using Microsoft Excel, a statistical analysis was performed to characterize the reduced state-space arrays in terms of physical parameters. This analysis has two steps: determining the main parameters and designing the "gray box" relationships.

Determining the Main Parameters

First we need to study the relative importance of the physical parameters and of the values contained in the reduced state-space arrays. Some array elements have little influence on the overall behavior of the modeled systems. Therefore, there is no need to accurately determine these elements. In some cases, it is sufficient to use an average value for these elements calculated from all the modeled configurations of the thermal bridge database. Also, there are *degrees of freedom* in a state-space model. That means

that some arrays may be chosen at random if some others have been chosen accordingly.

Simplification of the gray box relationships is accomplished through graphical analysis and the requirement that the results make physical sense. For instance, static heat flux is independent of material density and heat capacity, but these parameters do influence the dynamic behavior of the system.

Designing the "Gray Box" Relationships

The final gray box relationships were determined from least-squares regression. We first assume a general form for the relationships needed to compute the state space models. This work is done in conjunction with the first task of the sensitivity study described above.

Once we have these general relationships, we have to characterize them completely by determining the unknown coefficients. This is done with the least-squares method.

For example, for the Matisse Apartment (page 23), an L-shaped thermal bridge is described for a large number of physical parameter sets. Once we have these sets of configurations, we can plot various graphs showing the features of the state space models, such as time constants or heat gains, as a function of these parameters. For instance, if we decide to plot the time constant of the L-shaped bridge as a function of the concrete wall thickness, we get the following graph :

Figure 2: Example of the Behavior of a State Space Model Time Constant as a Physical Parameter Varies

This tells us that we have an almost linear relationship between the time constant and the concrete wall thickness. Repeating this technique with the other physical parameters allows us to find the general form of the calculated time constant. In this example, we get:

$$\tilde{\tau}_{l} = ae_{concrete} + bCp_{concrete} + c \tag{1}$$

where

- *e*_{concrete} is the concrete thickness (m)
- Cp_{concrete} is the concrete specific heat (J/kg.K)
- *a*, *b* and *c* are coefficients to be determined
- $\tilde{\tau}_1$ stands for the calculated time constant (h)

We now have to find the values of the unknown coefficients. To do so, we compute the sum of the squares of differences between the calculated time constant and the exact time constant as found in the reduced state space models, for all the studied configurations:

$$\Sigma = \sum_{\text{configurations}} (\tau_I - \tilde{\tau}_I)^2$$
⁽²⁾

where $\tilde{\tau}_{I}$ is the time constant of the models built with Sisley (h).

The values to choose for the unknown coefficients are then the ones which make this sum as small as possible. In our numerical example, we eventually find:

$$\tilde{\tau}_1 = 1.187 x 10^2 e_{concrete} + 2.074 x 10^{-2} C p_{concrete} - 2.261 x 10^1$$
(3)

The same work can be done with the other interesting values of the reduced state space models. For the L-shaped thermal bridge example, we finally get:

$$\tilde{\tau}_1 = 1.187 x 10^2 e_{concrete} + 2.074 x 10^{-2} C p_{concrete} - 2.261 x 10^1$$

$$g_{1} = -7.685 \times 10^{1} e_{concrete} - \frac{1.597 \times 10^{-2}}{e_{wallinsulation}} - 3.098 \lambda_{wallinsulation} - 2.452 \lambda_{roofinsulation} - 3820.10^{1}$$

$$g_2 = -g_1 \tag{4}$$
$$A_r = \left[\frac{1}{3600 \ \tilde{\tau}_1}\right]$$

$$B_{r} = \begin{bmatrix} A_{rI,I} & \frac{D_{rI,I} - g_{I}}{C_{rI,I}} & A_{I,I} & \frac{D_{rI,2} - g_{2}}{C_{rI,I}} \end{bmatrix}$$
$$C_{r} = \begin{bmatrix} 0.22 \end{bmatrix}$$
$$D_{r} = \begin{bmatrix} 0.4 \ 2.75 \end{bmatrix}$$

where

- *e*_{wallinsulation} is the wall insulation thickness (m)
- $\lambda_{wallinsulation}$ is the wall conductivity (W/m.K)
- $\lambda_{roofinsulation}$ is the roof insulation conductivity (W/m.k)
- g_1 and g_2 are the heat gains of the thermal bridge (W/K)

This allows the computation of the whole set of state space arrays, starting from a few physical parameters.

Integration of Thermal Bridge Models into EnergyPlus

Building Energy Simulation User News

The current EnergyPlus program (July 2002) does not simulate thermal bridges. Except for the foundation, the building envelope assumes 1-D heat transfer whereas 2-D or 3-D heat transfer is required to properly characterize thermal bridges. The existing walls in EnergyPlus are described with "Constructions" made up of one or more material layers through which 1-D heat transfer takes place.

A thermal bridge is a configuration through which heat flows in 2 or 3 dimensions. The bridge is modeled as a system with inputs and outputs, where the inputs are the outside conditions (outside air temperature or zone air temperature) and the outputs are the heat flux transmitted through the bridge from a zone to the outside or from one zone to another zone. It is important to properly integrate the thermal model with the existing heat balance calculation methodology in EnergyPlus.

Existing Code Structure and Calculation Methods

Zone Heat Balance

In EnergyPlus the heat flow calculations for the building envelope are based on heat balances, from which the zone air temperature is calculated. The basic heat balance expression is:

Zone Air Energy Variation = Σ (Thermal Loads and Heat Transfers with the Zone)

Integrating thermal bridges into EnergyPlus is equivalent to adding a new term to the right-hand side of this equation.

Calculation Sequence

We discuss here how the EnergyPlus loads calculations are carried out. The goal is to determine at what point the thermal bridge calculations should be done in the code. Figure 3 shows the organization of calculation modules in EnergyPlus. Arrows show the subroutine calls that are relevant to integrating the thermal bridge calculations. The Simulation Manager manages the subroutine calls. At every heat balance time step, it launches the HeatBalanceManager, which controls the heat balance and surface temperature calculations. It also launches the HVACManager every system time step. The HVACManager does the HVAC system calculations and determines zone air temperatures.

The other important modules as far as thermal bridges are concerned are ConductionTransferFunctionCalc and ZoneTempPredictorCorrector, both of which were modified to include thermal bridges.

Figure 3: Integration of Thermal Bridges into the EnergyPlus Calculation Sequence

Parallelism between Modeling Walls and Modeling Thermal Bridges

The gray box models presented earlier are linear differential systems in which the main mathematical features, such as the heat gains and the time constants, are linked to the main physical parameters, such as dimensions and material properties. EnergyPlus currently simulates walls (by "walls" we mean walls as usually understood, as well as floors, ceilings and roofs) using conduction transfer functions derived from state-space models. Figure 4 shows the parallelism between the way walls and thermal bridges are handled.

Figure 4: Comparison Between the Modeling of Constructions and Thermal Bridges in EnergyPlus

Wall Modeling

The top row in Fig. 4 shows how walls are modeled in EnergyPlus. The walls are composed of 1 to 15 layers whose thickness and material properties are user inputs. From these inputs, EnergyPlus derives a set of linear differential heat flow equations using a 1-D finite-difference method. This set of equations can be written in state-space form as:

$$\begin{cases} \dot{T} = AT + BU\\ \varphi = CT + DU \end{cases}$$
(5)

where, analogously to Eq. (1), *T* and \dot{T} are the temperatures at the nodes of the finite-difference mesh; *A*, *B*, *C* and *D* are arrays that depend neither on time nor on system inputs, *U* is the array of system inputs and φ is the array of system outputs (heat fluxes).

The finite-difference method uses nodes in each layer of the wall. The number of nodes is chosen in order to satisfy a numerical convergence criterion. A heat balance equation applies at each node.

From Eq. (5) EnergyPlus builds a new model of the wall that consists of transfer functions (called Conduction Transfer Functions, or CTFs) that relate the outputs of the system (heat flux) at the current time step to the outputs at the previous time step and the inputs (inside and outside surface temperatures) at the current and previous time steps [8]. This relationship can be written as follows:

$$\varphi_t = \sum_{k=0}^{M} S_{i,k} T_{i,t-k\delta} + \sum_{k=0}^{M} S_{o,k} T_{o_{i,t-k\delta}} - \sum_{k=1}^{M} e\varphi_{t-k\delta}$$
(4)

where *s* and *e* are the CTFs, T_i and T_o are the inside and outside surface temperature, respectively, *t* is the current time, and δ is the time step.

The resultant heat fluxes are then used in inside- and outside-surface heat balance equations to get the values of the inside and outside surface temperatures at the next time step. Finally, the convective inside air film conductance, the surface air temperature difference and the surface areas are used to calculate the convective heat gain to the zone air.

Thermal Bridge Modeling

The bottom row in Fig. 4 shows how thermal bridges are modeled. The basic differences between the two rows are the following:

- (1) The thermal bridge finite differences calculation is done outside of EnergyPlus. A regression process, also done outside of EnergyPlus, leads to thermal bridge state-space models that are parameterized in terms of physical parameters as gray boxes.
- (2) The heat flux in the wall construction case participates in a surface heat balance calculation, from which inside surface temperatures are obtained that yield heat gain to the zone air via a convective inside air film conductance. For thermal bridges, the surface heat balance step is skipped and heat flux from the thermal bridge goes directly into the zone air via a combined radiative/convective inside film conductance.
- (3) The wall calculation considers absorption of solar radiation on the outside face and absorption of solar, short-wave radiation from lights and long-wave radiation from lights, equipment and people on the inside face. These are ignored for thermal bridges. A near-term improvement to the thermal bridge calculation would be to take this absorbed radiation into account, perhaps in terms of a surface "sol-air" temperature.

As the modeling process is simplified for the thermal bridges, the heat flux through the studied configurations does not contribute to intermediate heat balances, but is used directly in the overall heat balances that determine the zone temperatures.

To summarize, the steps in thermal bridge modeling, numbered from 1 to 4 in Fig. 4, are the following:

- Step (1) From thermal bridge parameters to gray box state-space models: This is done outside of EnergyPlus and results in an internal EnergyPlus library of parameterized models of different thermal bridge configurations.
- Step (2) Calculate CTFs from state-space model: We use an adaptation of the algorithm used for walls.
- Step (3) Calculate heat flux from the thermal bridge: We apply CTF-based equation relating the current outputs to the past outputs and current and past inputs. Code has been added to EnergyPlus to store the past inputs and outputs for thermal bridges.
- Step (4) Add thermal bridge heat flux to zone heat balance.

Adding a New Thermal Bridge Configuration into EnergyPlus

To integrate a new thermal bridge into the EnergyPlus code, the programmer needs only to enter the gray box coefficients, from the previous step, into the source code and then add a new data structure fitted for this new configuration, which would require the user to input only the few physical parameters (the ones obtained in the beginning of the sensitivity study) needed to completely describe the numerical system. EnergyPlus will then make the link between these physical parameters and the coefficients entered in the source code, and will rebuild the corresponding gray box model, taking the calculations into account.

EnergyPlus Test Simulations of Thermal Bridges

The Matisse Apartment

"Matisse" is an apartment with one wall exposed to outside temperatures. It has a total area of 65.8m² including three main rooms (living room and two bedrooms) plus kitchen and bath. It is located on the top floor, under a terraced roof. It is a hypothetical structure often used for simulations carried out by EdF to compare the results from different energy simulation programs. Heating is provided by a simple zone- thermostat-controlled electric coil.

Figure 5: The Matisse Building

The following choices for the envelope components have been made so that the building is in agreement with the French thermal regulation :

		Description of the wall (outside \rightarrow inside)				
Name	Surface (m ²)	material	thickness (m)	λ (W/m.K)	$\rho (kg/m^3)$	Cp (J/kg.K)
Outside	17.88	Concrete	0.2	1.75	2450	920
wall		Polystyrene	0.08	0.03	35	1210
		Plaster	0.01	0.35	900	837
Wall on	25.67	Concrete	0.2	1.75	2450	920
corridor		Polystyrene	0.04	0.03	35	1210
		Plaster	0.01	0.35	900	837
Intermediate	65.77	Concrete	0.18	1.75	2450	920
floor						
Adjoining	14.95	Plaster	0.01	0.35	900	837
wall	15.13	Concrete	0.2	1.75	2450	920
		Plaster	0.01	0.35	900	837
Roof	65.77	Roof waterproofing	0.01	0.23	1050	920
		Polyurethane	0.06	0.025	55	1400
		Concrete	0.18	1.75	2450	920
		Plaster	0.01	0.35	900	837

Matisse is modeled with two different thermal bridges whose area represents 10% of the total building wall area (Figs. 5 and 6). There is a T-shaped thermal bridge where the corridor wall meets the roof. The top of this bridge is exposed to outside air. The other surfaces are exposed to the corridor air and the apartment air.

Figure 6: L- and T-Shaped Thermal Bridges

Figure 7: Temperatures During the Simulation

There is an L-shaped thermal bridge where the outside wall meets the roof. Two surfaces of this bridge are exposed to the outside air and two are exposed to the inside air. The simulation takes place over a single design day. The heating set point is 20°C between 8 AM and 5 PM and 15°C at other times. The outside temperature varies between -5° C and -15° C (Fig. 7).

Results

Figure 8 compares the heating rate with and without thermal bridges. For the case with thermal bridges, the wall and roof areas were decreased to take into account the thermal bridge areas. As expected, the heating rate is higher when the thermal bridges are modeled.

For the design day shown, the heating required is 14% higher when the thermal bridges are modeled.

Building Energy Simulation User News

References

- [1] J.A. Clarke, Energy Simulation in Building Design, Adam Hilger Ltd., Bristol, 1985
- [2] F. Déqué, F. Ollivier, A. Poblador, *Gray boxes used to represent buildings with a minimum number of geometric and thermal parameters*, Energy and Buildings 31 (2000) 29-35
- [3] F. Déqué, F. Ollivier, J.J. Roux, Effect of 2D modelling of thermal bridges on the energy performance of buildings, Numerical application on the Matisse apartment, Note EDF/DER/HE-14/00/017 Oct 2000
- [4] EnergyPlus Engineering Manual (www.energyplus.gov)
- [5] Kossecka, E. and J. Kosny, Modeling Two and Three Dimensional Heat Transfer through Composite Wall and Roof Assemblies in Hourly Energy Simulation Programs, Proc. Performance of Exterior Envelopes of Whole Buildings VIII, Dec 2001
- [6] F. Ollivier, Etudes Clim2000, Modélisation monozone du logement Matisse, Altran Technologies, May 1998
- [7] Réglementation Thermique 2000, Règles Th-U Ponts thermiques, CSTB
- [8] J.E. Seem, Modeling of Heat Transfer in Buildings, University of Wisconsin, 1987
- [9] Documentation technique du logiciel Reduc_model, EdF
- [10] Documentation technique du logiciel Sisley, EdF
- [11] F. Déqué, S. Delille, S. Dautin, *Réduction d'un système linéaire et invariant par la technique de Moore.* Application à la thermique du bâtiment, Revue générale de Thermique 36 (1997), p. 170-179
- [12] Mathlab, The Language of Technical Computing. http://www.mathworks.com, The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA

SPARK is an equation-based simulation environment that allows you to build customized models of complex physical processes by connecting calculation objects that represent system components like walls, fans, heat exchangers, chillers, ducts, mixing boxes, controls, etc. It is aimed at the simulation of innovative and/or complex building systems that are beyond the scope of whole-building programs like DOE-2 and EnergyPlus. VisualSPARK adds a graphical user interface to SPARK to simplify use of the program.

New features

Default preferences in setupcpp

- Added support for default values for the component preferences specified in a file called **default.prf** and residing in the working directory. The default values are used to populate the template preference file associated with the solution sequence generated by *setupcpp* for the problem.
- If the file exists upon calling *setupcpp*, the values in the file are used in place of the hard-coded default preference settings. If no such file exists, then *setupcpp* will generate a template file with the hard-coded default preferences for possible future modification by the user.

Absolute tolerance property for each problem variable

- A new variable property, ATOL, was added to the *SPARK* language on the PROBE, PORT and LINK statements in order to specify the absolute tolerance for each problem variable. The ATOL property should be set to the absolute value at which the variable in question is essentially insignificant.
- In *solver*, added support to load the ATOL property for each problem variable, thus replacing the AbsTolerance keyword previously specified in the problem.prf file at the component level.
- Improved the input handler to allow it to read in properties of problem variables along with the variable values at the specified time stamps. The syntax to specify the property ATOL of the variable X is the qualified name X:ATOL. The input handler can read in values for any variable properties, namely MIN, MAX, ATOL and INIT.

Sparse linear solution technique

- Added sparse linear solution method based on the C library *umfpack* (<u>http://www.cise.ufl.edu/research/sparse/umfpack</u>) v3.2 by Tim Davis. This new solution method is selected by specifying the value 4 for the key MatrixSolvingMethod in the problem.prf file. It does not rely on vendor-specific BLAS routines but instead on vanilla C code, thus ensuring portability of the *SPARK* program.
- Drastic gains in calculation speed by many orders of magnitude have been observed on large problems for which the Jacobian matrix is typically more than 90% sparse.

Full affine invariant scaling scheme

- Replaced previous scaling schemes with a single scaling scheme that achieves fully affine invariant scaling in both the variable space and residual space. This makes *solver* less sensitive to changes in the variable units and to formulations where the variables show very different orders of magnitude.
- If convergence difficulties are encountered with a particular problem, the full scaling scheme should be selected in the problem.prf file to improve the numerical behavior of *solver*.

Automatic Jacobian refresh strategy

- Added value 0 as a possible choice for the TrueJacobianEvalStep key in the problem.prf file. The value 0 indicates that the Jacobian matrix will be refreshed automatically by the solver code whenever it is needed to ensure robust and fast convergence. The refresh strategy is based on the convergence behavior of weighted residual and increment norms between successive iterations.
- For values larger than zero, the key TrueJacobianEvalStep still specifies the iteration frequency at which the Jacobian should be reevaluated.

Statistics log file

At the end of the simulation, *solver* generates a log file with performance statistics about the solver operation. In particular, you can find information on :

- the preference settings used for the simulation for each strong component;
- the average sparsity of the Jacobian matrix and the number of times it has been refreshed; and
- the operation of both the linear solver and the nonlinear solver with average calculation times.

This information can be used to compare the computational efficiency of solving models with different formulations or different preference settings.

Problem driver API

The problem driver application programming interface (API) added to VisualSPARK 1.0.2 allows an advanced user to:

- customize the sequence of operations to re-solve the same problem,
- manage and solve multiple problems,
- retrieve solution values and specify new inputs for a new simulation of the same problem, and
- change runtime parameters (e.g., to perform sensitivity analysis).

We have also modified the main.cpp file that implements the main *SPARK* driver function to use the new set of API. Comprehensive documentation on how to write such a problem driver function is available at http://simulationresearch.lbl.gov.

Changes

Documentation

- Merged glossary of terms between the SPARK Reference Manual and the VisualSPARK Users Guide.
- Enforced text conventions throughout the documentation to better distinguish the different elements of the *SPARK* language.

Parser

Discontinued usage of the keyword UPDATE_FROM_LINK in LINK, PORT and PROBE statements and replaced it with the keyword INPUT_FROM_LINK that better reflects its behavior

Solver

Improved convergence strategy

In order to ensure that badly-scaled systems are solved with satisfactorily precision, we now force the convergence check in the non-linear solver to occur in the variable space, i.e. solely based on the increments value, after the first iteration. This represents a change from *VisualSPARK* 1.0.1 where a successful residual check carried out even after the first iteration was a sufficient condition to stop the iteration. The convergence test is stricter and more robust, especially for problems with variables with very different order of magnitudes.

Variable scales based on individual absolute tolerances

The introduction of the ATOL property in the *SPARK* language allows to consider an individual absolute tolerance for each problem variable, as opposed to for each strong component as in *VisualSPARK* 1.0.1. The convergence check in the nonlinear solver and the computation of the cost function used with the backtracking Newton schemes have been updated to support the new absolute tolerance mechanism.

Graphical User Interface

- Changed default wall clock settings to year 2002
- Changed title of button from "MODIFY" to "MODIFY CLASS PATH"
- Added support for new solver features in the component preferences editor
- The absolute tolerance entry has been removed from the component preferences editor because it is now specified on a variable-by variable basis.
- Added the sparse LU matrix solving method.
- Reduced scaling types to "None" and "Full" in place of the former scaling options in VisualSPARK 1.0.1.

Bug Fixes

Documentation

Corrected typo in description of the macro links where the single quote ' used to prefix an object name in a hierarchy of objects was replaced with the single quote ` as prescribed by the *SPARK* syntax.

obj1'obj2'obj3~linkname

has been replaced with

obj1`obj2`obj3~linkname

Parser

- Keyword PARAMETER did not work when there were more than one PARAMETER statement in one class.
- Fixed infinite loop bug caused by aliased variables. Aliased variables are created in LINK statements that do NOT contain obj.port connections.

Setupcpp

Write out error message showing the calling syntax if *setupcpp* is executed with no argument at the command-line instead of crashing.

Solver

Fixed bug in *sparksym* for the *mathomatic* symbolic solver that limited to 14 the number of variables allowed in the equation to be processed.

Meetings, Conferences, Symposia

2002				
July 15-18 2002	2002 National Workshop on State Energy Building Codes	To be held in Des Moines, IAhttp://www.eren.doe.gov/buildings/ codes_standards/buildings/2002_workshop.html		
July 29 - August 1 2002	2002 State Energy Program Rebuild America National Conference	To be held in New Orleans, LA http://www.2002conference.com		
August 18-23 2002	Teaming for Efficiency	To be held in Pacific Grove, CA http://www.aceee.org		
September 12-13 2002	eSim 2002 Canadian Conference on Building Energy Simulation	To be held in Montreal, Canada http://buildingsgroup.nrcan.gc.ca/esim2002/English/ esim_home.htm		
October 14-18 2002	International Conference for Enhanced Building Operations	To be held in Richardson, TX http://www-esl.tamu.edu/icebo/		
November 1 2002	I BPSA Australasia 2002 Seminar	To be held in Adelaide, Australia, at Deakin University email: veronica@arch.adelaide.edu.au		
November 13-15 2002	First Annual International Green Building Conference and Expo	To be held in Austin, TX http:// www.usgbc.org/expo.htm		
December 4-6 2002	Advances in Building Technology	To be held in Hong Kong Contact: clyystui@polyu.edu.hk http://www.polyu.edu.hk/~fclu/ABT21002		
December 16-18 2002	6 th International Conference on System Simulation in Buildings	To be held in Liege, Belgium Contact: michele.deprez@ulg.ac.be http://www.ulg.ac.be/labothap		

Meetings, Conferences, Symposia

Directory of Software and Services for EnergyPlus

Program Name	Description		Cost
EnergyPlus	Downloadable from www.energyplus.gov	<u>Support</u> EnergyPlus-Support@gard.com <u>Support Group</u> groups.yahoo.com/group/EnergyPlus_Support	Free!

Support Tools for EnergyPlus

Program Name	Description	Cost
	Ensure Dive Online Circulations - online and such added in the East this are staff and a training machine as	Eners (
EnergyPlus Interface Support Tools	sustainable buildings. These tools can be used by anyone and require no special knowledge of EnergyPlus.	Free!
The Deringer Group, Inc.		
1349 Addison Street	EnergyPlus Interface Support Tools	
Tel: (510) 843-9000	EzPlus-Parm is a standalone Windows tool intended primarily for EnergyPlus parametric analysis. It was designed	
Fax: (510) 843-9005	to simplify the running of multiple parametric EnergyPlus simulations and helps a user organize and edit files.	
www.deringergroup.com	DrawEzPlus is a 3-D geometry rendering tool that displays the 3-D geometry imbedded in an EnergyPlus file.	

Directory of Software and Services for DOE-2

ESTSC Versions of DOE-2

Program Name	Description		Cost	
DOE-2.1E (Ed Kidd or Walt Kelly)	Source code, executable code and complete current	Support	Windows SUN-UNIX VAX	
estsc@adonis.osti.gov ESTSC	documentation for:	From ESTSC, limited operational support (telephone assistance	Govt/Educ \$ 300 \$455 \$500	
P.O. Box 1020	DOE-2.1E/Version 110 for Windows and SUN UNIX	concerning installation, media or	US, Mexico, Canada	
Oak Ridge, TN 37831-1020	DOE-2.1E/Version 117 1000-zone version	platform questions).	\$575 \$1365 \$1835	
www.osti.gov/estsc	OS: Windows, SUN UNIX		\$1075 \$2120 \$2716	

Commercial Versions of DOE-2

Program Name	Description		Cost
ADM-DOE-2 (Richard Burkhart) ADM Associates 3239 Ramos Circle Sacramento, CA 95827-2501 Ph: 916-363-8383, Fx: 363-1788 www.adm-energy.com	Use on 386/486 PCs with a math co-processor and 4MB of RAM. The package contains everything needed to run the program: program files, utilities, sample input files, and weather files. More than 300 weather files available. OS: DOS, Windows 95	Input Output Support	\$395 + \$15/SH including one set weather data (your choice) and documentation
Compare-IT(Matt Brost)RLW Analytics, Inc.info@rlw.com1055 Broadway, Suite GSonoma, CA 95476Ph: 707-939-8823, Fx: 939-9218www.rlw.com	Compare-IT allows DOE-2 professionals to add value to their projects by giving clients "what-if" scenarios using DOE-2. The interface is designed for novice energy analysts and the GUI can be customized for each client's particular interests. Based DOE-2.1E. OS: DOS, Windows (98, 95, NT)	Input: Customizable windows GUI dynamically built based on DOE-2 macros. <u>Output</u> Support	\$500 consultant \$2000 client Documentation available
DOE-Plus(Steve Byrne)Item Systemsbyrne @ item.com321 High School Road NE Box 344Bainbridge Island, WA 98110Ph: 206-855-9540 / Fx: 855-9541http://www.item.com/doeplus.htm	Complete support for all DOE-2 commands. Utility programs included: Prep, Demand Analyzer, weather processor. Over 500 worldwide weather files. Imports BDL files created with a text editor or other program. Based on DOE-2.1E. OS: DOS, Windows (3.1, 95, NT)	Input Interactive, graphical, fill-in-the-blanks Output Customizable tables and graphics	\$895 with DOE-2 and doc \$495 without DOE-2 Source code not available.

Note: We list third-party DOE-2-related products and services for the convenience of program users, with the understanding that the Simulation Research Group does not have the resources to check the DOE-2 program adaptations and utilities for accuracy or reliability.

Program Name	Description		Cost
EnergyPro 3.0 (D. Vonderkulen) demian@energysoft.com Gabel Dodd/EnergySoft LLC 100 Galli Drive #1 Novato, CA 94949-5657 Ph: 415-883-5900, Fx: 883-5970 www.energysoft.com	Performs nonresidential load calculations for HVAC equipment sizing. Electronically exports forms to AutoCad for inclusion on blueprints. On-line help. 344 weather files for the U.S. and Canada. OS: DOS, Windows (95, NT). <u>For California Users:</u> Performs Title 24 compliance calculations, includes state-certified HVAC and DHW Equipment directories, Title 24 tailored lighting calculations. Based on ESTSC DOE-2.1E	Input:_Graphical Output:_Graphs, forms Support_Unlimited support	DOE-2 Module: Non-residential \$700 ^{1,2} Residential \$250 ^{1,2} Program Interface \$195 ³ ¹ price reflects cash discount ² includes documentation ³ required
EZDOE (Bill Smith) bsmith @ elitesoft.com Elite Software P.O. Box 1194 Bryan, TX 77806 Ph: 409-846-2340 / Fx: 846-4367 http://www.elitesoft.com/web/hvacr/ elite_ezdoe_info.html	Provides full screen, fill-in-the-blank data entry, dynamic error checking, context-sensitive help, mouse support, graphic reports, a 750-page user manual, and extensive weather data. Full implementation of DOE-2 on DOS-based 386 and higher computers. On-line help. Some weather files. Based on DOE-2.1E. OS: DOS	Input Fill-in-the-blanks Output Standard DOE reports plus some custom graphic reports Support Unlimited phone support	\$1295 w/documentation Source code not available.
FTI/DOE2 (Scott Henderson) info @ finite-tech.com Finite Technologies Inc. 3763 Image Drive Anchorage, Alaska 99504 Ph: 907-333-8937, Fx: 333-4482 http://www.finite-tech.com/ FTIDOE2001.htm	Version 3.0 Release FTI/DOE is 100% compatible with LBNL version. Source code versions will compile with most F77-compliant compilers. On-line help: 344 weather files for the U.S. and Canada. Based on ESTSC DOE-2.1E. No demo, 30-day trial period OS : DOS, Windows (3.x, 95, NT) AIX, ULTRIX, VMS, Linux, NeXTStep,	Input Version 2.x: text based Version 3.x: graphical Output All standard DOE-2 reports Run time and status graphics Support 90-days free; then cost is \$ 35 each email per incident \$ 55 per hour per incident \$125 per hour for engineering advice.	\$ 995.99 US w/documentation \$1066 Int'l w/documentation \$4999.99 Source code
PRC-DDE-2(Paul Reeves)Paul.Reeves@DOE2.comPartnership for Resource Conservation140 South 34 th StreetBoulder, CO 80303Ph: 303-499-8611, Fx: 554-1370	Text-based version of DOE-2 includes documentation. Extensive information on new features, including information on new system types, new commands, new options, etc., added to later versions of 2.1E. OS: DOS, Windows (95, NT)	Input Standard text-based Output Support Unlimited support.	\$ 495 w/documentation Source code not available.
VisualDOE 3.0 (Eric Kolderup) Charles Eley Associates 142 Minna Street San Francisco, CA 94105 Ph: 415-957-1977 - Fax 1381 www.eley.com, support@eley.com	Fast construction of building geometry using pre- defined blocks and/or drawing interface. Import zone shapes from CADD file (dxf format). Point-and-click to define zone properties and HVAC systems. Rotate- able 3-D image of model. On-line help. 400+ US and foreign weather files. OS: DOS, Windows (3.1, 95, NT)	Input Graphical <u>Output</u> Graphical <u>Support_</u> 90 days free phone and email support.; thereafter \$195/hear	Contact Eley Associates for price (w/ doc). Source code n/a.

Support Tools for DOE-2

Program Name	Description	Cost
DOE-2 Parametric Study Tool The Deringer Group, Inc. 1349 Addison Street Berkeley, CA 94702 Ph: (510) 843-9000, Fx: -9005 www.deringergroup.com	DOE2PARM – is an MS Windows-based tool that permits you to run, edit and link all the related input and output files together in the same window.	Free!
DrawBDL Joe Huang & Associates 6720 Potrero Avenue El Cerrito, CA 94530 Ph/Fx: 510-236-9238	DrawBDL , Version 2.1, is a graphic debugging and drawing tool for DOE-2 building geometry . DrawBDL reads your BDL input and makes a rotate-able 3-D drawing of your building with walls, windows, and building shades shown in different colors for easy identification. OS: DOS, Windows (3.1, 95, 98, NT) [Works with 2.1E]	\$125.00 plus shipping
PRC-TOOLS (Paul Reeves) P R C 140 South 34 th Street Boulder, CO 80303 Ph: 303-499-8611 / Fx: 554-1370	<i>PRC-Tools</i> aid in extracting, analyzing, and formatting DOE-2 output . <i>PRC-Grab</i> automates the process of extracting any number of answers from DOE-2 standard output files. <i>PRC-Hour</i> and <i>PRC-Peak</i> format the hourly output and create Peak-Day and Average-Day load shapes for any number of periods and for any combination of hourly values. OS: Windows (95, 98, NT) [Works with 2.1E]	\$99.00
RIUSKA(Tuomas Laine)Olof Granlund OyP O Box 59 Helsinki, FIN-00701Finland (tuomas.laine@granlund.fi)Ph: +358 (9) 351031 / Fx: 35103421	With RIUSKA user can add building envelope materials, internal loads and HVAC-system into the created 3D-model of the building and perform thermal calculations. RIUSKA can be used for space simulations to dimension cooling or heating equipments, or for energy calculations of the whole building. OS: Windows (95, 98, NT) [Works with 2.1E]	Contact Tuomas Laine for pricing.
Visualize-IT (Matt Brost) RLW Analytics, Inc. mattb@rlw.com 1055 Broadway, Suite G Sonoma, CA 95476 Ph: 800-472-6716 Fx: 707-939-8823 www.rlw.com/visualize_it.html	Visualize-IT 2.0 is a Windows application designed to help you explore and summarize short-interval time series data, e.g., measurements taken once every 15 minutes over a period of weeks, months or years. Visualize-IT has been developed specifically for electric and gas load data measuring class profiles, market-segments, individual customer sites or specific end uses. Customized DOE2.1e hourly output importer. Visualize-IT is highly useful and informative for looking at DOE2 output and/or comparing to interval metered data. It is equally useful for other time series measurements such as weather, industrial process control, and water quality. OS: Windows 95, 98 and NT	\$500.00 per set Volume Discounts Available

Special Versions of DOE-2

Program Name	Description	Cost
CBIP cbip.nrcan.gc.ca/cbip.htm Office of Energy Efficiency Natural Resources Canada 580 Booth St., 18th Floor Ottawa ON K1A 0E4, CANADA	Natural Resources Canada's Commercial Building Incentive Program (CBIP) offers a financial incentive for the incorporation of energy efficiency features in new commercial and institutional building designs. The objective of this new incentive is to encourage energy-efficient design practices and to bring about lasting changes in the Canadian building design and construction industry. The program will be offered until March 31, 2004.	Web Based (free)
Cool Tools(Peter Turnbull)Pacific Gas & Electric Companypwt1@pge.comwww.hvacexchange.com/cooltools/	The CoolTools [™] project objective is to develop, disseminate and promote an integrated set of tools for design and operation of chilled water plants. CoolTools products are Internet based, public domain resources available to building owners, design professionals, and operators involved in both new construction and retrofits.	Web Based (free)
DesiCalc GRI-98/0127 www.desicalc.com	DesiCalc screens desiccant cooling applications . It estimates annual or monthly energy loads, using hour-by-hour simulations, and costs for 11 typical commercial buildings in 236 geographical locations in the US. Includes the latest TMY2 meteorological database [Based on DOE-2.1E] Operating System: Windows 3.1, 95, 98, NT	\$295 w/doc +8.75% tax in IL +4.5% tax in VA S/H add \$20
Energy Gauge USA (Danny Parker) Florida Solar Energy Center 1679 Clearlake Road Cocoa, FL 32922 energygauge.com	<i>Energy Gauge USA</i> allows the simple calculation and rating of residential building energy use in the US. The simulation calculates a six-zone model of the residence (conditioned zone, attic, crawlspace, basement, garage and sunspace) with the various buffered spaces linked to the interior as appropriate. TMY weather data for the program are available for 239 US locations. [Based on DOE-2.1E] Operating System: Windows 95, 98, NT	Contact Danny Parker at FSEC for availability.
Home Energy Saver (Residential DOE-2) hes.lbl.gov	Calculation of residential energy consumption using DOE-2.1E . The program performs a full annual simulation for a typical weather year (involving 8760 hourly calculations) from 239 locations around the United States in about 10-20 seconds.	Web Based (free)
PERFORM 2001 California Energy Commission 1516-9 th St., MS-13 Sacramento, CA 95814 Ph: 916-654-5385	Created for the State of California Energy Commission's, Title 24 energy code . Perform 2001 is an interface shell with DOE-2 as the engine. PERFORM 2001 calculates building energy consumption for space heating, space cooling and domestic hot water heating, and compares the energy consumption of the building design against the requirements of the standards. DOS input. Output is only California Title 24 compliant. [Based on DOE-2.1E] Technical support \$100/year from Gabel-Dodd Energy Soft LLC, Call 415-883-5900 for details.	\$250 including PERFORM 2001 program and manual on CD. (VISA/MC) Order #PS-400-04-017 www.energy.ca.gov/reports/ reports_400.html
RESFEN-3.1 Building Technologies, MS 90-3111 Lawrence Berkeley Laboratory Berkeley, CA 94720	RESFEN calculates the energy and cost implications of a building's windows compared to insulated walls . The relative energy and cost impacts of two different windows can also be compared against each other. RESFEN calculates the heating and cooling energy use and associated costs, also the peak heating and cooling demand for specific window products. [Based on DOE-2.1E] Operating System: Windows 95, 98, NT	Free! Download from windows.lbl.gov/software/ resfen

INTERNATIONAL DOE-2 RESOURCE CENTERS

The people listed here have agreed to be primary contacts for DOE-2 program users in their respective countries. Each resource center has the latest program documentation, all back issues of the User News, and recent LBNL reports pertaining to DOE-2. Users may make arrangements to photocopy the new material for a nominal cost. We hope to establish centers in other countries; please contact us if you want to establish a center in your area.

Australia and Australasia

P. C. Thomas, SOLARCH, University of New South Wales, Sydney 2052, Australia

Tel: +61 2 9385 6373 / Fax: +61 2 9385 6735, email PC.Thomas@unsw.EDU.AU www.fbe.unsw.edu.au/units/solarch

Murray Mason, ACADS BSG, 18 High Street, Glen Iris, VIC. 3146, Australia / Tel: +61 39 885 6586 / Fax: +61 39 885 5974

Brazil

Prof. Roberto Lamberts, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Cx. Postal 476, 88049-900 Florianopolis SC, BRASIL lamberts@ecv.ufsc.br / Tel: +55 48 331 9272/ Fax: +55 48 331 9770

Czech Republic

Faculty of Civil Engineering, Dept. of Environmental and Building Services Engineering, Czech Technical University in Prague, Thakurova 7, 166 29 Praha 6, CZECH REPUBLIC www.fsv.cvut.cz/ascii/index.htm Tel: +42 2 2435 4327

Egypt

Dr. Ossama A. Abdou, Center for Building Environmental Studies and Testing (C-Best), 15-El-Shibani Street, Almanza, Cairo, Egypt Tel: +20 2 391 1137 or +20 2 417 4583 / Fax: +20 2 519 4343 / oabdou@hotmail.com

Germany

B. Barath or G. Morgenstern, Ingenieurbüro Barath & Wagner GmnH, Postfach 20 21 41, D-41552 Kaarst, Germany Tel: +49 2 131 7574 9012 G. Morgenstern / Fax: +49 2 131 7574 9029

Hong Kong, China, Taiwan, Japan

Dr. Sam C. M. HUI or K.P. Cheung, Dept of Architecture, University of Hong Kong, Pokfulam Road, Hong Kong (SAR), CHINA / cmhui@hku.hk or kpcheung@hku.hk / http://arch.hku.hk/research/BEER/DOE-2/DOE-2.htm

Tel: +852 2859 2123 Sam Hui / Fax: +852 2559 6484

India

Jiten Prajapati or Anil K. Anand, Energy Systems Engineering, IIT-Mumbai, Powai, Mumbai 400 076, INDIA Tel : +91 022 578 2545 x7378

Italy

Marco Rapella, Managing Director Divisione Energie, Openplan SRL, c.so di Porta Nuova 13/15, 20121 Milano, Italy Tel: 39 02 626 94252, fax 36 02 2901 0531, marco.rapella@openplan.it, www.openplan.it

Korea (Chungnam)

Dr. Jun Tae Kim, Department of Architectural Engineering, Kongju National University, 182 Sinkwan-dong, Kongju, Chungnam 314-701, Republic of Korea / jtkim@knu.kongju.ac.kr / Tel: +82 416 850 8653 / Fax +82 416 856 9388

Korea (Seoul)

Dr. Jung-Ho Huh, Ph.D., Assistant Professor, Dongdaemoon-Gu Jeonnong-Dong 90, Dept. of Architectural Engineering, The University of Seoul, Seoul 130-743, Korea. -- huhj0715@uoscc.uos.ac.kr, Tel: +02-2210-2616 / Fax: +02-2248-0382

INTERNATIONAL DOE-2 RESOURCE CENTERS (continued)

Korea (Taejon)

Dr. Euy-Joon Lee and Jong-Ho Yoon, Passive Solar Research Team, Bldg 2, Room 202, Korea Institute of Energy Research, Daeduk Science Town, 71-2 Jang-Dong, Yusong-Gu, Taejon 305-343, Republic of Korea. -- Lee: ejlee@kier.re.kr, Yoon: yesru@kier.re.kr Tel: +82 42 860 3514 / Fax: +82 42 860 3132

New Zealand

Tan Yune, Architecture Department, The University of Auckland, Private Bag 92019, Auckland, New Zealand tanyune@ccu1.auckland.ac.nz / Tel: +64 9 373 7999 x5647 / Fax: +64 9 373 7410

Portugal, Spain, Italy, and Greece

Antonio Rego Teixeira, INETI, Departamento de Energias Renováveis (DER), Estrada do Paco do Lumiar, 1649-038 Lisboa, Portugal rego.teixeira@mail.ineti.pt / Tel: +351 21 712 7237 / Fax: +351 21 712 7195

Singapore, Malaysia, Indonesia, Thailand, and the Philippines

WONG Yew Wah (Raymond), Nanyang Technological University, School of Mechanical and Production Engineering, Nanyang Avenue, Singapore 2263, Republic of Singapore, mywwong@ntu.edu.sg / Tel: +65 790 5543 / Fax: +65 791 1859

South Africa

Prof. L. J. Grobler, School of Mechanical and Materials Engineering, University of Potchefstroom, Private Bag X6001, Potchefstroom 2520, South Africa, mgiljg@puknet.puk.ac.za / Tel: +27 148 299 1328 / Fax: +27 148 299 1320

Switzerland

René Meldem, BG ingenieurs Conseils SA, 61 Avenue de Cour, Case postale, CH-1000 Lausanne, Switzerland Tel: +41 21 618 1111, Fax: +41 21 618 1122, rene.meldem@bg-21.com

Disclaimer: The Building Energy Simulation User News was prepared as an account of work sponsored by the United States Government (USG). While this document is believed to contain correct information, neither the USG nor any agency thereof, nor the Regents of the University of California (RUC), nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by its trade name, trademark, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the USG or any agency thereof, or the RUC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the USG or any agency thereof or of the Regents of the University of California

INTERNATIONAL DOE-2 ENERGY CONSULTANTS

Australia

P. C. Thomas, Sustainable Building & Energy Consultants, 6/52 Houston Road, Kingsford NSW 2032, Australia.

Tel/Fax: +61 2 9662 0205, Mobile +61 417 405 478, pc_thomas@iname.com

Paul Bannister, Energy Group, Ltd., Unit 9, 14 Lonsdale Street, P. O. Box 25, Braddon, ACT 2612, Australia, Tel: 61 2 6257 7066, Fax 61 2 6257 7063, paul@xgl.com.au, www.eglnet.com

Belgium

Andre Dewint, S.A. Alpha Pi n.v., Avenue Franklin Roosevelt 74 bte 2, B-1000 Bruxelles, BELGIUM, Tel: +32 2 343 4251 / Fax: +32 2 343 0377, andewint@vub.ac.be

Canada

Curt Hepting, P.Eng. EnerSys Analytics, 2989 Delahaye Drive, Coquitlam, B.C. V3B 6Y9 Canada chepting@enersys.ca, www.enersys.bc.ca/homepage Tel: (604) 552-0700 / Fax (604) 552-0713

Dejan Radoicic, D. W. Thomson Consultants, Ltd., 1985 West Broadway #200, Vancouver, BC V6J 4Y3, Canada Tel (604) 731-4921 / Fax (604) 738-4420, dwtvan@dwtc.bc.ca, www.dwtc.bc.ca

Neil A. Caldwell, PE, Ameresco Canada, Inc., 1730 - 401 West Georgia St., Vancouver, BC V6B 5A1 Canada , Tel (604) 684-4984 / Fax (604) 684-4985 ncaldwell@ameresco.com

Dr. Stephane Bilodeau, PE, President, Groupe Enerstat, Inc., 79 Wellington North #202, Sherbrooke (Quebec) J1H 5A9, Canada sbilodeau@groupeenerstat.com, www.groupeenerstat.com/english/index.htm / Tel: (819) 562-8040 / Fax (819) 562-5578

Gordon Shymko, G.F. Shymko & Associates, Inc., 129 Evergreen Crescent S.W., Calgary, Alberta T2Y 3R2, Canada, gfshymko@home.com, Tel: (403) 254-4776, Fax: (403) 254-4795,

Germany

Jens Grundt and Ludwig Michel, GMW-Ingenieurburo, Die Planer Villa, Bünteweg 10a, 30559 Hannover, Lower Saxony, Germany Tel: +49 0511 58 59 48 -11/Fax +49 0511 58 59 48 -48 www.gmw-ingenieurbuero.de j.grundt@gmw-ingenieurbuero.de

Italy

Marco Rapella, Managing Director Divisione Energie, Openplan SRL, c.so di Porta Nuova 13/15, 20121 Milano, Italy Tel: 39 02 626 94252, fax 36 02 2901 0531, marco.rapella@openplan.it, www.openplan.it

Ireland

Paul Overy, Overy + Associates, Mechanical and Electrical Consulting Engineers, 43 Parnell Street, Clonmel, Co Tipperary, Ireland Tel: +353 (0)52-27667, Fax: +353 (0)52-29238 www.overy-assoc.com

Switzerland

René Meldem, BG ingenieurs Conseils SA, 61 Avenue de Cour, Case postale, CH-1000 Lausanne, Switzerland Tel: +41 21 618 1111, Fax: +41 21 618 1122, rene.meldem@bg-21.com

Philip Schluchter, Institut fur Bauphysik Klein, Urs Graf-Strasse 1, CH-4052 Basel, Switzerland

Gerhard Zweifel, Hochschule Technik + Architektur Luzern, Technikumstrasse 21 Abt. HLK, CH-6048 Horw, Switzerland gzweifel@ztl.ch

Tel: +41 349 3349, Fax: 349 3960

Markus Koschenz, Building Equipment Section 175, EMPA, 129 Überlandstrasse, CH-8600 Dübendorf, Switzerland

Markus.Koschenz@empa.ch, Tel: +41 1823 5511, Fax: 821-6244

United Kingdom

Dr. Peter Simmonds, Ove Arup and Partners, Ltd., 13 Fitzroy Street, London W1P 6BQ, UNITED KINGDOM. Tel: +44 20-7465-3637 / Fax: 7465-3667, peter.simmonds@arup.com / www.arup.com

U.S. DOE-2 ENERGY CONSULTANTS

Arizona				
Dale R. Broughton, P.E.	Quantum Computer Resources	20833 North 1 st Street	Phoenix, AZ 85027	(623) 780-3496
drb6@home.com	www.qcr-usa.com			fax: 322-0049
Henny van Lambalgen, P.E.	Quest Energy Group, LLC	4324 East Pearce Road	Phoenix, AZ 85044	(480) 753-5590
henny@questenergy.com	www.questenergy.com			fax 753-1215
Marlin S. Addison	M. S. Addison & Associates	1215 West 12th Place	Tempe, AZ 85281	(480) 968-2040
marlin.addison@doe2.com				fax: 968-2053
Chuck Sherman	ESSengineering	2141 East Broadway, #211	Tempe, AZ 85282	(480) 784-4500
ces@essinc.com				fax: 784-4800
California				
Joseph Deringer, Peter Zhang	The Deringer Group, Inc.	1349 Addison Street	Berkeley, CA 94703	(510) 843-9000
jderinger@deringergroup.com	www.deringergroup.com			fax: 843-9005
M. Gabel, R. Howley	Gabel Associates, LLC	1818 Harmon Street	Berkeley, CA 94703	(510) 428-0803
office@gabelenergy.com	www.gabelenergy.com			fax: 428-0324
George Marton	1129 Keith Avenue		Berkeley, CA 94708	(510) 841-8083
Leo Rainer	Davis Energy Group, Inc.	123 C Street	Davis, CA 95616	(916) 753-1100
lirainer@davisenergy.com	www.davisenergy.com			
L. Heshong and D. Mahone	The Heshong Mahone Group	11626 Fair Oaks Blvd, #302	Fair Oaks, CA 95628	(916) 962-7001
	www.h-m-g.com			fax: 962-0101
Cliff Gustafson,	Taylor Systems Engineering. Inc.	9801 Fair Oaks Blvd., #100	Fair Oaks, CA 95628	(916) 961-3400
James Trowbridge, P.E.	www.tse-inc.net			fax: 961-3410
Tom Lunneberg, PE	Constructive Tech. Group	16 Technology Dr., #109	Irvine, CA 92618	(949) 790-0010
tlunneberg@ctg-net.com	www.ctg-net.com/main.htm			
David J. Schwed	Romero Management Associates	1805 West Avenue K	Lancaster, CA 93534	(805) 940-0540
rma@as.net	www.asnet/~rma/index.htm			
Martyn C. Dodd	Gabel Dodd/EnergySoft, LLC	100 Galli Drive, # 1	Novato, CA 94949	(415) 883-5900
support@energysoft.com	www.energysoft.com	th		fax: 883-5970
Jim Kelsey PE, Kevin Warren	kW Engineering	360-17" Street #100	Oakland, CA 94612	(510) 834-6420
kelsey@kw-engineering.com	www.kw-engineering.com			fax: 834-6373
Patrick Nkwocha, PE	Global Tech Services	3360 Foothill Blvd., #108	Pasadena, CA 91107	(626) 583-8205
UPat@worldnet.att.net				fax: 583-8206
John F. Kennedy, PE	GeoPraxis, Inc.	205 Keller Street	Petaluma, CA 94952-3874	(707) 766-7010
info@geopraxis.com	www.geopraxis.com			fax: 766-7014
Greg Cunningham	ESSengineering	114 Sansome St., #1201	San Francisco, CA 94104	(415) 296-9760
gwc@essinc.com				fax: 784-9761
Charles Eley, T. Tathagat	Eley Associates	142 Minna Street	San Francisco, CA 94105	(415) 957-1977
info@eley.com	www.eley.com			fax: 957-1381
Chandra Shinde, PE	Envirodesign Group	19613 El Camino Esplanade	Walnut, CA 91789-2138	(909) 598-1980
Colorado				
Fred Porter	Architectural Energy Corp	2540 Frontier Ave, #201	Boulder, CO 80301	(303) 444-4149 fax [.] 444-4304

U.S. DOE-2 ENERGY CONSULTANTS (continued)

Colorado (continued)				
Ellen Franconi	Nexant	1401 Walnut Street, #403	Boulder, CO 80302	(303) 440-4343 fax: 440-6644
Susan Reilly denver@enermodal.com	Enermodal Engineering	1554 Emerson Street	Denver, CO 80218	(303) 861-2070 fax: 830-2016
Joel Neymark, PE neymarkj@qwest.net	J. Neymark & Associates	2140 Ellis Street	Golden, CO 80401	(303) 384-3672 fax: 384 9427
Norm Weaver, PE n_weaver@interwvr.com	Interweaver Consulting www.interwvr.com	P.O. Box 775444	Steamboat Springs, CO 80477	(970) 870-1710
Connecticut				
Adrian Tuluca swa@swinter.com	Steven Winter Associates www.swinter.com	50 Washington Street	Norwalk, CT 06854	(203) 857-0200 fax: 852-0741
District of Columbia				
Kurmit Rockwell, PE	XENERGY, Inc., Suite 1110 www.xenergy.com	1025 Connecticut Ave., N.W.	Washington, DC 20036	(202) 872-1626
Florida				-
Philip Wemhoff wemhoffp@buildingsleuth.com	9765 MacArthur Court North		Jacksonville, FL 32246	(904) 645-5342
Dr. Paul Hutchins PE,CEM	Reynolds Smith & Hills, Inc. www.rsandh.com	4651 Salisbury Road	Jacksonville, FL 32256	(904) 279-2277 fax: 279-2491
Georgia				
Lung-Sing Wong, PE Iswong@bpe-inc.com	Building Performance Engineers www.bpe-inc.com	3060 Wanda Woods Drive	Atlanta, GA 30340	(770) 270-0100
Illinois				
Gary H. Michaels, PE	G.H. Michaels Associates	1512 Crain Street	Evanston, IL 60202	(847) 869-5859
Prem N. Mehrotra Robert Henninger, PE	GARD Analytics Inc	230 Madison Street	Oak Park, IL 60302	(708) 386-6000
rhenninger@gard.com	www.gard.com	1020 Dusse Highway		(047) 000 0000
Kansas				
Dr. Brian A. Rock, PE	U. Kansas, A/E Dept, Marvin Hall	barock@ukans.edu	Lawrence, KS 66045-2222	(785) 864-3603
Massachusetts				
C. Kalasinsky PE, T.Chan	R.G. Vanderweil Engrs., Inc. www.vanderweil.com	274 Summer Street	Boston, MA 02458-1113	(617) 423-7423 fax: 423-7401
Mark Mullins	Select Energy Services www.selectenergysi.com	24 Prime Parkway	Natick, MA 01760	(508) 653-0456 fax: 653-0266
Michael Andelman andelman@irma-ae.com	JRMA & Associates www.jrma-ae.com	421 Watertown St.	Newton, MA 02210	(617) 964-8889 fax: 964-7881

U.S. DOE-2 ENERGY CONSULTANTS (continued)

Missouri				
Mike Roberts	Roberts Engineering Co.	11946 Pennsylvania	Kansas City, MO 64145	(816) 942-8121
Bruce A. Leavitt, PE	Wm. Tao & Associates Inc.	2357-59 th Street	St. Louis, MO 63110	(314) 644-1400
Montana				
Michael W Harrison, PE	Harrison Engineering	139 Bluebird Lane	Whitehall, Montana 59759	(406) 287-5370
Nebraska	-		·	
Philip M. Schreier, PE	Farris Engineering	11239 Chicago Circle	Omaha, NE 68154-2634	(402) 330-5900 fax: 330-5902
New York	www.nebraska.org/4/4/01/00/c0.ntm			Tax. 330-3902
Robert F. Gibeault	PB Power Inc	1873 Western Avenue #201	Albany NY 12203	(518) 862-0012
gibeault@pbworld.com	www.pbworld.com		, doarly, 111 12200	fax: 862-1608
J. Fireovid, P.E.,	SAIC Energy Solutions Div.	421 New Karner Road	Albany, NY 12205	(518) 452-8800
K. Youset, P.E.	www.saic.com			tax: 452-8111
Dave Pruitt, Scott Frank	Jaros, Baum & Bolles WWW.jbb.com	80 Pine Street	New York, NY 10005	(212) 530-9300
North Carolina				
Gopal Shiddapur, PE gsshidda@duke-energy.com	DukeSolutions (MC: ST05A) duke-energy.com	230 S. Tryon Street, # 400	Charlotte, NC 28202	(704) 373-4439 fax: 373-4872
Oregon				
Carol Gardner	Gardner Energy Management	PO Box 12549	Portland, OR 97212-0549	(503) 223-4847 fax: 223-8486
John P. Karasaki, P.E. jpkarasa@cbg-engrs.com	CBG Consulting Engineers	6650 S. W. Redwood Lane #355	Portland, OR 97224	(503) 620-3232 fax: 620-0346
Pennsvlvania		-		
Kimberly Byk, wba@utcorp.com	Wood, Byk & Associates, Inc.	829 Meadowview Road	Kennett Square, PA 19348	(610) 347-0710 fax: 347-0711
Texas	-		-	
Jeff S. Haberl jhaberl@esl.tamu.edu	Energy Systems Laboratory esl.tamu.edu	Texas A&M University	College Station., TX 77843-3123	(409) 845-6065
Tarek Bou-Saada	bousaada@flash.net	4410 Grand Cayman Drive	Sugar Land, TX 77479	(281) 265-9139
Virginia				
Dave Walker walkeng@swva.net	Walker Engineering www.swva.net/walkeng	P.O. Box 366, 4230 Pulaski Giles Turnpike	Staffordsville, VA 24167	(540) 921-4544 fax: 921-4548
Washington				
Steve Byrne	ITEM Systems, suite 344	321 High School Road NE	Bainbridge Island, WA 98110	(206) 855-9540
byrne@item.com	www.halcyon.com/byrne/item.htm			
Gregory J. Banken, PE gbanken@qmetrics.com	Q-Metrics, Inc. www.qmetrics.com	P.O. Box 3016	Woodinville, WA 98072-3016	(425) 825-0200 fax: 825-0136