[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [EnergyPlus_Support] Hybrid Cooling Tower





Julien,

Availability managers in plant or air loop will turn on or off the entire loop (not individual dry or evaporative fluid coolers) so they may not serve the purpose in this case. If the dry and evaporative fluid coolers are in parallel branches with their branch pumps, these pumps' schedule can be modified using EMS. (Something like below). You can try and see if this works.

Another lot more time consuming but accurate way could be to use PlantComponent:UserDefined. This object will allow to define the behavior of hybrid cooling tower.

  Branch,
    Condenser Supply Fluidcooler Branch 1,  !- Name
    0,                       !- Maximum Flow Rate {m3/s}
    ,                        !- Pressure Drop Curve Name
    Pump:VariableSpeed,      !- Component 1 Object Type
    Cond Circ Pump 1,          !- Component 1 Name
    Cond Circ Pump 1 Inlet Node,  !- Component 1 Inlet Node Name
    Condenser Fluidcooler Inlet Node,  !- Component 1 Outlet Node Name
    ACTIVE,                  !- Component 1 Branch Control Type
    Fluidcooler:SingleSpeed, !- Component 2 Object Type
    Big FluidCooler,         !- Component 2 Name
    Condenser Fluidcooler Inlet Node,  !- Component 2 Inlet Node Name
    Condenser Fluidcooler Outlet Node,  !- Component 2 Outlet Node Name
    ACTIVE;                  !- Component 2 Branch Control Type

  Branch,
    Condenser Supply Fluidcooler Branch 2,  !- Name
    0,                       !- Maximum Flow Rate {m3/s}
    ,                        !- Pressure Drop Curve Name
    Pump:VariableSpeed,      !- Component 1 Object Type
    Cond Circ Pump 2,          !- Component 1 Name
    Cond Circ Pump 2 Inlet Node,  !- Component 1 Inlet Node Name
    Condenser EvapFluidcooler Inlet Node,  !- Component 1 Outlet Node Name
    ACTIVE,                  !- Component 1 Branch Control Type
    EvaporativeFluidCooler:SingleSpeed, !- Component 2 Object Type
    Big EvaporativeFluidCooler,         !- Component 2 Name
    Condenser EvapFluidcooler Inlet Node,  !- Component 2 Inlet Node Name
    Condenser EvapFluidcooler Outlet Node,  !- Component 2 Outlet Node Name
    ACTIVE;                  !- Component 2 Branch Control Type

  Pump:VariableSpeed,
    Cond Circ Pump 1,          !- Name
    Cond Circ Pump 1 Inlet Node,  !- Inlet Node Name
    Condenser Fluidcooler Inlet Node,  !- Outlet Node Name
    0.001388,                !- Rated Flow Rate {m3/s}
    297500,                  !- Rated Pump Head {Pa}
    500,                     !- Rated Power Consumption {W}
    .87,                     !- Motor Efficiency
    0.0,                     !- Fraction of Motor Inefficiencies to Fluid Stream
    0,                       !- Coefficient 1 of the Part Load Performance Curve
    1,                       !- Coefficient 2 of the Part Load Performance Curve
    0,                       !- Coefficient 3 of the Part Load Performance Curve
    0,                       !- Coefficient 4 of the Part Load Performance Curve
    0,                       !- Minimum Flow Rate {m3/s}
    INTERMITTENT,            !- Pump Control Type
    CondCircPump1PumpAvailSched;   !- Pump Flow Rate Schedule Name

  Fluidcooler:SingleSpeed,
    Big FluidCooler,         !- Name
    Condenser Fluidcooler Inlet Node,  !- Water Inlet Node Name
    Condenser Fluidcooler Outlet Node,  !- Water Outlet Node Name
    NominalCapacity,         !- Performance Input Method
    ,                        !- Design Air Flow Rate U-factor Times Area Value {W/K}
    58601.,                  !- Nominal Capacity {W}
    51.67,                   !- Design Entering Water Temperature {C}
    35,                      !- Design Entering Air Temperature {C}
    25.6,                    !- Design Entering Air Wetbulb Temperature {C}
    0.001388,                !- Design Water Flow Rate {m3/s}
    9.911,                   !- Design Air Flow Rate {m3/s}
    autosize;                !- Design Air Flow Rate Fan Power {W}

  Pump:VariableSpeed,
    Cond Circ Pump 2,          !- Name
    Cond Circ Pump 2 Inlet Node,  !- Inlet Node Name
    Condenser EvapFluidcooler Inlet Node,  !- Outlet Node Name
    0.001388,                !- Rated Flow Rate {m3/s}
    297500,                  !- Rated Pump Head {Pa}
    500,                     !- Rated Power Consumption {W}
    .87,                     !- Motor Efficiency
    0.0,                     !- Fraction of Motor Inefficiencies to Fluid Stream
    0,                       !- Coefficient 1 of the Part Load Performance Curve
    1,                       !- Coefficient 2 of the Part Load Performance Curve
    0,                       !- Coefficient 3 of the Part Load Performance Curve
    0,                       !- Coefficient 4 of the Part Load Performance Curve
    0,                       !- Minimum Flow Rate {m3/s}
    INTERMITTENT,            !- Pump Control Type
    CondCircPump2PumpAvailSched;   !- Pump Flow Rate Schedule Name

  EvaporativeFluidcooler:SingleSpeed,
    Big EvaporativeFluidCooler,  !- Name
    Condenser EvapFluidcooler Inlet Node,  !- Water Inlet Node Name
    Condenser EvapFluidcooler Outlet Node,  !- Water Outlet Node Name
    3.02,                    !- Design Air Flow Rate {m3/s}
    2250,                    !- Design Air Flow Rate Fan Power {W}
    0.002208,                !- Design Spray Water Flow Rate {m3/s}
    UserSpecifiedDesignCapacity,  !- Performance Input Method
    ,                        !- Outdoor Air Inlet Node Name
    ,                        !- Heat Rejection Capacity and Nominal Capacity Sizing Ratio
    ,                        !- Standard Design Capacity {W}
    ,                        !- Design Air Flow Rate U-factor Times Area Value {W/K}
    0.001703,                !- Design Water Flow Rate {m3/s}
    87921,                   !- User Specified Design Capacity {W}
    46.11,                   !- Design Entering Water Temperature {C}
    35,                      !- Design Entering Air Temperature {C}
    25.6;                    !- Design Entering Air Wet-bulb Temperature {C}


  Schedule:Compact,
    CondCircPump1PumpAvailSched,   !- Name
    Fraction,                !- Schedule Type Limits Name
    Through: 12/31,           !- Field 1
    For: AllDays,            !- Field 2
    Until: 24:00,0.0;        !- Field 3

  Schedule:Compact,
    CondCircPump2PumpAvailSched,   !- Name
    Fraction,                !- Schedule Type Limits Name
    Through: 12/31,           !- Field 1
    For: AllDays,            !- Field 2
    Until: 24:00,0.0;        !- Field 3

  EnergyManagementSystem:Actuator,
    Set_CondCircPump1Avail_Sched, !- Name
    CondCircPump1PumpAvailSched, !- Actuated Component Unique Name
    Schedule:Compact,            !- Actuated Component Type
    Schedule Value;              !- Actuated Component Control Type

  EnergyManagementSystem:Actuator,
    Set_CondCircPump2Avail_Sched, !- Name
    CondCircPump2PumpAvailSched, !- Actuated Component Unique Name
    Schedule:Compact,            !- Actuated Component Type
    Schedule Value;              !- Actuated Component Control Type

  EnergyManagementSystem:ProgramCallingManager,
    My Setpoint Schedule Calculator Example,
    BeginTimestepBeforePredictor,
    Set_CondCircPumpAvail_Sched_Prog;

  EnergyManagementSystem:Sensor,
    OutdoorTemp,                           !- Name
    Environment,                           !- Output:Variable Index Key Name
    Site Outdoor Air Drybulb Temperature;  !- Output:Variable Name

  EnergyManagementSystem:Program,
Set_CondCircPumpAvail_Sched_Prog,
IF (OutdoorTemp <= 18.33 && OutdoorTemp > 0.0),
 Set Set_CondCircPump1Avail_Sched = 1.0 ,
 Set Set_CondCircPump2Avail_Sched = 0.0 ,
ELSEIF (OutdoorTemp > 21.0),
 Set Set_CondCircPump1Avail_Sched = 0.0 ,
 Set Set_CondCircPump2Avail_Sched = 1.0 ,
ENDIF;

  Output:Variable,CondCircPump1PumpAvailSched,Schedule Value,timestep;
  Output:Variable,CondCircPump2PumpAvailSched,Schedule Value,timestep;

  Output:Variable,Cond Circ Pump 1,Pump Electric Power,timestep;
  Output:Variable,Cond Circ Pump 1,Pump Mass Flow Rate,timestep;
  Output:Variable,Cond Circ Pump 2,Pump Electric Power,timestep;
  Output:Variable,Cond Circ Pump 2,Pump Mass Flow Rate,timestep;


On Fri, Aug 1, 2014 at 10:17 PM, Julien Marrec julien.marrec@xxxxxxxxx [EnergyPlus_Support] <EnergyPlus_Support@xxxxxxxxxxxxxxx> wrote:
 

Hi,

Has anyone successfully modeled an hybrid cooling tower in E+?
By hybrid I mean running dry until a switchover temperature. When the outdoor dry bulb is above, say, 65°F, you start spraying.

How would you do it?

Should I use for example one CoolingTower:TwoSpeed and one FluidCooler:TwoSpeed and turn them on/off based on outdoor temperature using an availabilitymanager?


Thanks for any insight you can provide.

Best,
Julien

--
Julien Marrec, EBCP, BPI MFBA
Energy&Sustainability Engineer
T: +33 6 95 14 42 13
www.julienmarrec.com

DoYouBuzz : www.doyoubuzz.com/julien-marrec_1
LinkedIn (fr) : www.linkedin.com/in/julienmarrec/fr
LinkedIn (en) : www.linkedin.com/in/julienmarrec




__._,_.___

Posted by: Chandan Sharma <chandangsharma@xxxxxxxxx>


Primary EnergyPlus support is found at:
http://energyplus.helpserve.com or send a message to energyplus-support@xxxxxxxx

The primary EnergyPlus web site is found at:
http://www.energyplus.gov

The group web site is:
http://groups.yahoo.com/group/EnergyPlus_Support/

Attachments are currently allowed but be mindful that not everyone has a high speed connection.  Limit attachments to small files.

EnergyPlus Documentation is searchable.  Open EPlusMainMenu.pdf under the Documentation link and press the "search" button.




Visit Your Group
Yahoo! Groups
PrivacyUnsubscribeTerms of Use

__,_._,___